{"title":"使用 125I 标记的 oxLDL 作为放射性示踪剂,对小鼠动脉粥样硬化斑块中浸润的泡沫细胞进行放射性成像","authors":"Michi Izawa, Hidekazu Kawashima, Yui Okuno, Junna Nakaya, Mayuko Takeda, Koki Harada, Yuri Yamada, Kaneyasu Nishimura, Keiichi Ishihara, Satoshi Akiba, Kazuyuki Takata","doi":"10.1007/s11307-024-01951-9","DOIUrl":null,"url":null,"abstract":"<p>Bioimaging such as magnetic resonance is used to monitor atherosclerotic plaques consisting of foam cells, which are derived from macrophages that have ingested oxidized low-density lipoprotein (oxLDL). However, the current bioimaging techniques are not highly specific and sensitive in detecting foam cells, calling for the development of higher precision foam cell detection probes. Here, we investigated the utility of iodine-125-labeled oxLDL (<sup>125</sup>I-oxLDL) as a prototype radiotracer in the radioimaging of foam cells infiltrating atherosclerotic plaques. Mouse bone marrow-derived macrophages (BMDMs) were used to analyze oxLDL uptake. Atherosclerosis mouse model was injected with <sup>125</sup>I-oxLDL and DiI-labeled oxLDL (DiI-oxLDL). Accumulation of <sup>125</sup>I-oxLDL and DiI-oxLDL in foam cells infiltrating atherosclerotic plaques was examined using Oil Red O (ORO) staining, autoradiography, and fluorescent immunohistochemistry. BMDMs phagocytosed oxLDL/<sup>125</sup>I-oxLDL via CD36, but not LDL/<sup>125</sup>I-LDL. The radioactive signal from <sup>125</sup>I-oxLDL phagocytosed by the BMDMs could be detected for at least 3 days. In atherosclerosis mouse model, atherosclerotic plaques formed in the aortic arches and valves. The radioactive signal of the injected <sup>125</sup>I-oxLDL was detected in atherosclerotic plaques of the aortic arch, and its intensity was positively correlated with the lesion size. Furthermore, the DiI-oxLDL fluorescent signals were detected in foam cells accumulating in atherosclerotic plaques. Thus, we found that <sup>125</sup>I-oxLDL can be used as a radiotracer in the radioimaging of foam cells in atherosclerotic plaques by autoradiography, suggesting its potential future applications in bioimaging methods such as single-photon emission computed tomography.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":"45 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radioimaging Foam Cells Infiltrating Atherosclerotic Plaques in Mice Using 125I-labeled oxLDL as a Radiotracer\",\"authors\":\"Michi Izawa, Hidekazu Kawashima, Yui Okuno, Junna Nakaya, Mayuko Takeda, Koki Harada, Yuri Yamada, Kaneyasu Nishimura, Keiichi Ishihara, Satoshi Akiba, Kazuyuki Takata\",\"doi\":\"10.1007/s11307-024-01951-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioimaging such as magnetic resonance is used to monitor atherosclerotic plaques consisting of foam cells, which are derived from macrophages that have ingested oxidized low-density lipoprotein (oxLDL). However, the current bioimaging techniques are not highly specific and sensitive in detecting foam cells, calling for the development of higher precision foam cell detection probes. Here, we investigated the utility of iodine-125-labeled oxLDL (<sup>125</sup>I-oxLDL) as a prototype radiotracer in the radioimaging of foam cells infiltrating atherosclerotic plaques. Mouse bone marrow-derived macrophages (BMDMs) were used to analyze oxLDL uptake. Atherosclerosis mouse model was injected with <sup>125</sup>I-oxLDL and DiI-labeled oxLDL (DiI-oxLDL). Accumulation of <sup>125</sup>I-oxLDL and DiI-oxLDL in foam cells infiltrating atherosclerotic plaques was examined using Oil Red O (ORO) staining, autoradiography, and fluorescent immunohistochemistry. BMDMs phagocytosed oxLDL/<sup>125</sup>I-oxLDL via CD36, but not LDL/<sup>125</sup>I-LDL. The radioactive signal from <sup>125</sup>I-oxLDL phagocytosed by the BMDMs could be detected for at least 3 days. In atherosclerosis mouse model, atherosclerotic plaques formed in the aortic arches and valves. The radioactive signal of the injected <sup>125</sup>I-oxLDL was detected in atherosclerotic plaques of the aortic arch, and its intensity was positively correlated with the lesion size. Furthermore, the DiI-oxLDL fluorescent signals were detected in foam cells accumulating in atherosclerotic plaques. Thus, we found that <sup>125</sup>I-oxLDL can be used as a radiotracer in the radioimaging of foam cells in atherosclerotic plaques by autoradiography, suggesting its potential future applications in bioimaging methods such as single-photon emission computed tomography.</p>\",\"PeriodicalId\":18760,\"journal\":{\"name\":\"Molecular Imaging and Biology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Imaging and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11307-024-01951-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-024-01951-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Radioimaging Foam Cells Infiltrating Atherosclerotic Plaques in Mice Using 125I-labeled oxLDL as a Radiotracer
Bioimaging such as magnetic resonance is used to monitor atherosclerotic plaques consisting of foam cells, which are derived from macrophages that have ingested oxidized low-density lipoprotein (oxLDL). However, the current bioimaging techniques are not highly specific and sensitive in detecting foam cells, calling for the development of higher precision foam cell detection probes. Here, we investigated the utility of iodine-125-labeled oxLDL (125I-oxLDL) as a prototype radiotracer in the radioimaging of foam cells infiltrating atherosclerotic plaques. Mouse bone marrow-derived macrophages (BMDMs) were used to analyze oxLDL uptake. Atherosclerosis mouse model was injected with 125I-oxLDL and DiI-labeled oxLDL (DiI-oxLDL). Accumulation of 125I-oxLDL and DiI-oxLDL in foam cells infiltrating atherosclerotic plaques was examined using Oil Red O (ORO) staining, autoradiography, and fluorescent immunohistochemistry. BMDMs phagocytosed oxLDL/125I-oxLDL via CD36, but not LDL/125I-LDL. The radioactive signal from 125I-oxLDL phagocytosed by the BMDMs could be detected for at least 3 days. In atherosclerosis mouse model, atherosclerotic plaques formed in the aortic arches and valves. The radioactive signal of the injected 125I-oxLDL was detected in atherosclerotic plaques of the aortic arch, and its intensity was positively correlated with the lesion size. Furthermore, the DiI-oxLDL fluorescent signals were detected in foam cells accumulating in atherosclerotic plaques. Thus, we found that 125I-oxLDL can be used as a radiotracer in the radioimaging of foam cells in atherosclerotic plaques by autoradiography, suggesting its potential future applications in bioimaging methods such as single-photon emission computed tomography.
期刊介绍:
Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures.
Some areas that are covered are:
Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes.
The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets.
Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display.
Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging.
Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics.
Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations.
Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.