{"title":"微纳米 TiC 粒子复合团簇增强铝硅铜镍镁合金的高温力学性能","authors":"Sunhang Xiao, Zhengbing Xiao, Jinchuan Wen, Zhijie Dai, Dahong Zhao","doi":"10.1007/s11665-024-10105-5","DOIUrl":null,"url":null,"abstract":"<p>This study aims to elucidate the influence of varying TiC particle additions on the mechanical properties of Al-10Si-3.5Cu-2.5Ni-0.3Mg alloys. The alloys were fabricated using the gravity casting technique, with TiC additions of 0, 0.5, 0.75, and 1%. Following T6 heat treatment, the microstructure, tensile strength, and fracture mechanisms of the alloys were comprehensively analyzed. The research findings indicate that the microstructure is primarily composed of α-Al, eutectic Si, Al<sub>3</sub>Ni, Al<sub>3</sub>CuNi, (Al, Si)<sub>2</sub>(Zr, Ti), and (Al, Si)<sub>3</sub>(Zr, Ti) phases. Image J quantitative analysis indicated that increasing TiC content resulted in the refinement of both the eutectic silicon and the grains. Additionally, the Al<sub>3</sub>Ni and Al<sub>3</sub>CuNi phases gradually became spheroidized and had a homogeneous distribution. The 350 °C tensile strength of the alloy increased from 93.7 to 137.8 Mpa with increasing TiC content, an increase of 44.1 MPa (47%). This is mainly attributed to the stability of the (Al, Si)<sub>2</sub>(Zr, Ti) phases at high temperatures and the refinement of the grains, eutectic silicon, and intermetallic second phases.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"64 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of High-Temperature Mechanical Properties in Al-Si-Cu-Ni-Mg Alloy by Micro-nano TiC Particle Complex Clusters\",\"authors\":\"Sunhang Xiao, Zhengbing Xiao, Jinchuan Wen, Zhijie Dai, Dahong Zhao\",\"doi\":\"10.1007/s11665-024-10105-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to elucidate the influence of varying TiC particle additions on the mechanical properties of Al-10Si-3.5Cu-2.5Ni-0.3Mg alloys. The alloys were fabricated using the gravity casting technique, with TiC additions of 0, 0.5, 0.75, and 1%. Following T6 heat treatment, the microstructure, tensile strength, and fracture mechanisms of the alloys were comprehensively analyzed. The research findings indicate that the microstructure is primarily composed of α-Al, eutectic Si, Al<sub>3</sub>Ni, Al<sub>3</sub>CuNi, (Al, Si)<sub>2</sub>(Zr, Ti), and (Al, Si)<sub>3</sub>(Zr, Ti) phases. Image J quantitative analysis indicated that increasing TiC content resulted in the refinement of both the eutectic silicon and the grains. Additionally, the Al<sub>3</sub>Ni and Al<sub>3</sub>CuNi phases gradually became spheroidized and had a homogeneous distribution. The 350 °C tensile strength of the alloy increased from 93.7 to 137.8 Mpa with increasing TiC content, an increase of 44.1 MPa (47%). This is mainly attributed to the stability of the (Al, Si)<sub>2</sub>(Zr, Ti) phases at high temperatures and the refinement of the grains, eutectic silicon, and intermetallic second phases.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10105-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10105-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancement of High-Temperature Mechanical Properties in Al-Si-Cu-Ni-Mg Alloy by Micro-nano TiC Particle Complex Clusters
This study aims to elucidate the influence of varying TiC particle additions on the mechanical properties of Al-10Si-3.5Cu-2.5Ni-0.3Mg alloys. The alloys were fabricated using the gravity casting technique, with TiC additions of 0, 0.5, 0.75, and 1%. Following T6 heat treatment, the microstructure, tensile strength, and fracture mechanisms of the alloys were comprehensively analyzed. The research findings indicate that the microstructure is primarily composed of α-Al, eutectic Si, Al3Ni, Al3CuNi, (Al, Si)2(Zr, Ti), and (Al, Si)3(Zr, Ti) phases. Image J quantitative analysis indicated that increasing TiC content resulted in the refinement of both the eutectic silicon and the grains. Additionally, the Al3Ni and Al3CuNi phases gradually became spheroidized and had a homogeneous distribution. The 350 °C tensile strength of the alloy increased from 93.7 to 137.8 Mpa with increasing TiC content, an increase of 44.1 MPa (47%). This is mainly attributed to the stability of the (Al, Si)2(Zr, Ti) phases at high temperatures and the refinement of the grains, eutectic silicon, and intermetallic second phases.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered