{"title":"原位加固和原位加固对使用不同 K2TiF6 助熔剂含量制造的 AA6061-B4C 复合材料干式往复磨损行为的协同效应","authors":"Chandan Kumar, Indrani Sen, Siddhartha Roy","doi":"10.1007/s11665-024-10106-4","DOIUrl":null,"url":null,"abstract":"<p>This study aims to examine the dry reciprocating wear behavior of stir–squeeze cast AA6061-B<sub>4</sub>C composites under the synergistic effect of ex situ B<sub>4</sub>C particles and in situ formed Al-Ti intermetallic phases due to the use of K<sub>2</sub>TiF<sub>6</sub> salt as flux and Mg<sub>2</sub>Si precipitates formed after T6 heat treatment process. The K<sub>2</sub>TiF<sub>6</sub> flux content in the composites varied between 40 and 100% of a constant B<sub>4</sub>C content (6 wt.%). The heat treatment consisted of solutionizing at 540 °C for 8 h, followed by water quenching and then artificially aging at 180 °C for 4 h. While at any applied load, the wear rate decreased with increasing ex situ B<sub>4</sub>C particle retention, at applied loads more than 20 N, the wear performance deteriorated due to increased fracture and dislodgement of B<sub>4</sub>C particles. In situ Al-Ti intermetallics were more effective in lowering the wear rate at high applied loads. A mechanically mixed layer (MML) consisting of self-lubricating boron oxide and boric acid was formed in composites with high B<sub>4</sub>C particle retention, lowering the friction coefficient up to 20 N applied load. However, the friction coefficient increased at a higher applied load of 30 N due to increased peeling off the MML and three-body wear.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"187 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content\",\"authors\":\"Chandan Kumar, Indrani Sen, Siddhartha Roy\",\"doi\":\"10.1007/s11665-024-10106-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to examine the dry reciprocating wear behavior of stir–squeeze cast AA6061-B<sub>4</sub>C composites under the synergistic effect of ex situ B<sub>4</sub>C particles and in situ formed Al-Ti intermetallic phases due to the use of K<sub>2</sub>TiF<sub>6</sub> salt as flux and Mg<sub>2</sub>Si precipitates formed after T6 heat treatment process. The K<sub>2</sub>TiF<sub>6</sub> flux content in the composites varied between 40 and 100% of a constant B<sub>4</sub>C content (6 wt.%). The heat treatment consisted of solutionizing at 540 °C for 8 h, followed by water quenching and then artificially aging at 180 °C for 4 h. While at any applied load, the wear rate decreased with increasing ex situ B<sub>4</sub>C particle retention, at applied loads more than 20 N, the wear performance deteriorated due to increased fracture and dislodgement of B<sub>4</sub>C particles. In situ Al-Ti intermetallics were more effective in lowering the wear rate at high applied loads. A mechanically mixed layer (MML) consisting of self-lubricating boron oxide and boric acid was formed in composites with high B<sub>4</sub>C particle retention, lowering the friction coefficient up to 20 N applied load. However, the friction coefficient increased at a higher applied load of 30 N due to increased peeling off the MML and three-body wear.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10106-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10106-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在考察在原位 B4C 颗粒和因使用 K2TiF6 盐作为助熔剂而在原位形成的铝钛金属间相以及 T6 热处理过程后形成的 Mg2Si 沉淀物的协同作用下,搅拌-挤压铸造 AA6061-B4C 复合材料的干往复磨损行为。复合材料中的 K2TiF6 助熔剂含量在恒定 B4C 含量(6 wt.%)的 40% 到 100% 之间变化。热处理包括在 540 °C 下固溶 8 小时,然后水淬,再在 180 °C 下人工老化 4 小时。虽然在任何施加载荷下,磨损率都会随着原位 B4C 颗粒保留量的增加而降低,但当施加载荷超过 20 N 时,由于 B4C 颗粒的断裂和脱落增加,磨损性能会恶化。原位铝钛金属间化合物能更有效地降低高负载下的磨损率。在 B4C 颗粒保留率较高的复合材料中形成了由自润滑氧化硼和硼酸组成的机械混合层(MML),从而降低了摩擦系数,最高可达 20 N 的施加载荷。然而,由于 MML 的剥离和三体磨损加剧,在施加 30 N 的较高负载时,摩擦系数有所增加。
Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content
This study aims to examine the dry reciprocating wear behavior of stir–squeeze cast AA6061-B4C composites under the synergistic effect of ex situ B4C particles and in situ formed Al-Ti intermetallic phases due to the use of K2TiF6 salt as flux and Mg2Si precipitates formed after T6 heat treatment process. The K2TiF6 flux content in the composites varied between 40 and 100% of a constant B4C content (6 wt.%). The heat treatment consisted of solutionizing at 540 °C for 8 h, followed by water quenching and then artificially aging at 180 °C for 4 h. While at any applied load, the wear rate decreased with increasing ex situ B4C particle retention, at applied loads more than 20 N, the wear performance deteriorated due to increased fracture and dislodgement of B4C particles. In situ Al-Ti intermetallics were more effective in lowering the wear rate at high applied loads. A mechanically mixed layer (MML) consisting of self-lubricating boron oxide and boric acid was formed in composites with high B4C particle retention, lowering the friction coefficient up to 20 N applied load. However, the friction coefficient increased at a higher applied load of 30 N due to increased peeling off the MML and three-body wear.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered