Jianbo Jia, Wentao Xie, Bo Xu, Ziliang Chu, Qiang Wang, Yan Xu
{"title":"固溶处理对 6061 铝合金微观结构、机械性能和强化机理的影响","authors":"Jianbo Jia, Wentao Xie, Bo Xu, Ziliang Chu, Qiang Wang, Yan Xu","doi":"10.1007/s11665-024-10074-9","DOIUrl":null,"url":null,"abstract":"<p>Different solution treatments for annealed 6061 aluminum alloy were performed using an orthogonal testing method. The effects of solution treatments on the microstructure and mechanical properties of the alloy were investigated by employing techniques such as electron backscatter diffraction and tensile tests. The effects of changes in the size and area fraction of the soluble phase on solid solubility, dislocation evolution, and recrystallization were explored. A microstructure evolution model for the solution-treated alloy was developed, and the contributions of different strengthening mechanisms were quantified. The results indicate that the optimal solution treatment parameters were treatment at 570 °C for 3 h, followed by water quenching. After treatment, Mg<sub>2</sub>Si dissolves into the matrix, increasing the solid solubility and fraction of recrystallized grains while reducing the dislocation density. All solution-treated alloys, except those quenched in a furnace, displayed notable increases in strength with minimal loss in ductility. The water-quenched alloy exhibited the best overall mechanical properties, with the yield strength and ultimate tensile strength increasing by 139.4 and 128.1%, respectively, compared to those of the untreated alloy. Analysis of the strengthening mechanisms revealed that the primary contributors to improved alloy strength are dislocation and grain boundary strengthening.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"206 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Solution Treatment on Microstructure, Mechanical Properties, and Strengthening Mechanisms of 6061 Aluminum Alloy\",\"authors\":\"Jianbo Jia, Wentao Xie, Bo Xu, Ziliang Chu, Qiang Wang, Yan Xu\",\"doi\":\"10.1007/s11665-024-10074-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Different solution treatments for annealed 6061 aluminum alloy were performed using an orthogonal testing method. The effects of solution treatments on the microstructure and mechanical properties of the alloy were investigated by employing techniques such as electron backscatter diffraction and tensile tests. The effects of changes in the size and area fraction of the soluble phase on solid solubility, dislocation evolution, and recrystallization were explored. A microstructure evolution model for the solution-treated alloy was developed, and the contributions of different strengthening mechanisms were quantified. The results indicate that the optimal solution treatment parameters were treatment at 570 °C for 3 h, followed by water quenching. After treatment, Mg<sub>2</sub>Si dissolves into the matrix, increasing the solid solubility and fraction of recrystallized grains while reducing the dislocation density. All solution-treated alloys, except those quenched in a furnace, displayed notable increases in strength with minimal loss in ductility. The water-quenched alloy exhibited the best overall mechanical properties, with the yield strength and ultimate tensile strength increasing by 139.4 and 128.1%, respectively, compared to those of the untreated alloy. Analysis of the strengthening mechanisms revealed that the primary contributors to improved alloy strength are dislocation and grain boundary strengthening.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10074-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10074-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Solution Treatment on Microstructure, Mechanical Properties, and Strengthening Mechanisms of 6061 Aluminum Alloy
Different solution treatments for annealed 6061 aluminum alloy were performed using an orthogonal testing method. The effects of solution treatments on the microstructure and mechanical properties of the alloy were investigated by employing techniques such as electron backscatter diffraction and tensile tests. The effects of changes in the size and area fraction of the soluble phase on solid solubility, dislocation evolution, and recrystallization were explored. A microstructure evolution model for the solution-treated alloy was developed, and the contributions of different strengthening mechanisms were quantified. The results indicate that the optimal solution treatment parameters were treatment at 570 °C for 3 h, followed by water quenching. After treatment, Mg2Si dissolves into the matrix, increasing the solid solubility and fraction of recrystallized grains while reducing the dislocation density. All solution-treated alloys, except those quenched in a furnace, displayed notable increases in strength with minimal loss in ductility. The water-quenched alloy exhibited the best overall mechanical properties, with the yield strength and ultimate tensile strength increasing by 139.4 and 128.1%, respectively, compared to those of the untreated alloy. Analysis of the strengthening mechanisms revealed that the primary contributors to improved alloy strength are dislocation and grain boundary strengthening.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered