苯代谢与健康风险评估:从生物监测中获得的启示。

IF 5.7 2区 医学 Q1 TOXICOLOGY
Sean M Hays,Christopher R Kirman,Louis Anthony Cox,Satinder S Sarang
{"title":"苯代谢与健康风险评估:从生物监测中获得的启示。","authors":"Sean M Hays,Christopher R Kirman,Louis Anthony Cox,Satinder S Sarang","doi":"10.1080/10408444.2024.2379896","DOIUrl":null,"url":null,"abstract":"Metabolic conversion of benzene (Bz) is thought to be required for the hematotoxic effects observed following Bz exposures. Most safe exposure limits set for Bz utilize epidemiology data on the hematotoxic effects of Bz for the dose-response assessments. These hematotoxic effects occurred among workers exposed to elevated Bz levels, thus dose extrapolation is required for assessing relevant risks for populations exposed orders of magnitude lower. Thus, understanding how Bz is metabolized over a wide range of air Bz levels is an important topic for risk assessments for Bz. Here, we analyze biomonitoring data for workers exposed to Bz to make evaluations of how the metabolism of Bz varies across a wide range of exposures. Our analysis indicates that the presence of metabolites derived from exposures to sources other than Bz (nonspecific metabolites of Bz) are significant confounders among biomonitoring studies and this precludes making any assessments of how Bz metabolism differs below approximately 3 ppm air Bz exposures using such nonspecific metabolites.","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzene metabolism and health risk evaluation: insights gained from biomonitoring.\",\"authors\":\"Sean M Hays,Christopher R Kirman,Louis Anthony Cox,Satinder S Sarang\",\"doi\":\"10.1080/10408444.2024.2379896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolic conversion of benzene (Bz) is thought to be required for the hematotoxic effects observed following Bz exposures. Most safe exposure limits set for Bz utilize epidemiology data on the hematotoxic effects of Bz for the dose-response assessments. These hematotoxic effects occurred among workers exposed to elevated Bz levels, thus dose extrapolation is required for assessing relevant risks for populations exposed orders of magnitude lower. Thus, understanding how Bz is metabolized over a wide range of air Bz levels is an important topic for risk assessments for Bz. Here, we analyze biomonitoring data for workers exposed to Bz to make evaluations of how the metabolism of Bz varies across a wide range of exposures. Our analysis indicates that the presence of metabolites derived from exposures to sources other than Bz (nonspecific metabolites of Bz) are significant confounders among biomonitoring studies and this precludes making any assessments of how Bz metabolism differs below approximately 3 ppm air Bz exposures using such nonspecific metabolites.\",\"PeriodicalId\":10869,\"journal\":{\"name\":\"Critical Reviews in Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10408444.2024.2379896\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2024.2379896","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

苯(Bz)的代谢转化被认为是在接触苯后产生血液毒性效应的必要条件。大多数针对苯并[Bz]制定的安全接触限值都利用了苯并[Bz]血液毒性效应的流行病学数据来进行剂量反应评估。这些血液毒性效应发生在暴露于较高 Bz 水平的工人身上,因此需要进行剂量外推法,以评估暴露于较低数量级人群的相关风险。因此,了解 Bz 在空气中的广泛 Bz 水平范围内是如何代谢的,是 Bz 风险评估的一个重要课题。在这里,我们分析了暴露于 Bz 的工人的生物监测数据,以评估 Bz 的新陈代谢如何在广泛的暴露范围内发生变化。我们的分析表明,在生物监测研究中,暴露于 Bz 以外的来源所产生的代谢物(Bz 的非特异性代谢物)是重要的混淆因素,这就排除了使用此类非特异性代谢物对低于约百万分之 3 的空气 Bz 暴露进行 Bz 代谢差异评估的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benzene metabolism and health risk evaluation: insights gained from biomonitoring.
Metabolic conversion of benzene (Bz) is thought to be required for the hematotoxic effects observed following Bz exposures. Most safe exposure limits set for Bz utilize epidemiology data on the hematotoxic effects of Bz for the dose-response assessments. These hematotoxic effects occurred among workers exposed to elevated Bz levels, thus dose extrapolation is required for assessing relevant risks for populations exposed orders of magnitude lower. Thus, understanding how Bz is metabolized over a wide range of air Bz levels is an important topic for risk assessments for Bz. Here, we analyze biomonitoring data for workers exposed to Bz to make evaluations of how the metabolism of Bz varies across a wide range of exposures. Our analysis indicates that the presence of metabolites derived from exposures to sources other than Bz (nonspecific metabolites of Bz) are significant confounders among biomonitoring studies and this precludes making any assessments of how Bz metabolism differs below approximately 3 ppm air Bz exposures using such nonspecific metabolites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
1.70%
发文量
29
期刊介绍: Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信