颗粒形状对颗粒材料空隙的影响:对颗粒过滤器性能的影响

IF 2.4 3区 工程技术
Ali Abdallah, Eric Vincens, Hélène Magoariec, Mohsen Ardabilian, Christophe Picault
{"title":"颗粒形状对颗粒材料空隙的影响:对颗粒过滤器性能的影响","authors":"Ali Abdallah,&nbsp;Eric Vincens,&nbsp;Hélène Magoariec,&nbsp;Mohsen Ardabilian,&nbsp;Christophe Picault","doi":"10.1007/s10035-024-01452-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the influence of particle shape on the void space morphology and topology in granular materials. Numerical samples with spherical and ellipsoidal particle shapes were generated using the discrete element method. A segmentation algorithm was used to extract the pore space characteristics. The results reveal that particle shape significantly affects both constriction and pore sizes, with distinctive features according to flatness index or elongation ratio, the former being more significant than the latter. The obtained results were validated by conducting numerical filtration tests, which illustrated a direct correlation between the constriction properties derived from the pore space extraction and the blockage rate of fine particles in the filtration tests. The study revealed the importance of considering particle shape in filter design, emphasising its significant impact on pore space characteristics and filtration performance.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of particle shape on the void space in granular materials: implications for the properties of granular filters\",\"authors\":\"Ali Abdallah,&nbsp;Eric Vincens,&nbsp;Hélène Magoariec,&nbsp;Mohsen Ardabilian,&nbsp;Christophe Picault\",\"doi\":\"10.1007/s10035-024-01452-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the influence of particle shape on the void space morphology and topology in granular materials. Numerical samples with spherical and ellipsoidal particle shapes were generated using the discrete element method. A segmentation algorithm was used to extract the pore space characteristics. The results reveal that particle shape significantly affects both constriction and pore sizes, with distinctive features according to flatness index or elongation ratio, the former being more significant than the latter. The obtained results were validated by conducting numerical filtration tests, which illustrated a direct correlation between the constriction properties derived from the pore space extraction and the blockage rate of fine particles in the filtration tests. The study revealed the importance of considering particle shape in filter design, emphasising its significant impact on pore space characteristics and filtration performance.</p><h3>Graphic abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01452-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01452-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了颗粒形状对颗粒材料空隙形态和拓扑结构的影响。使用离散元方法生成了具有球形和椭圆形颗粒形状的数值样本。使用分割算法提取孔隙空间特征。结果表明,颗粒形状对收缩和孔隙大小都有显著影响,根据扁平指数或伸长率可得出不同的特征,前者比后者更为显著。通过进行数值过滤试验验证了所获得的结果,结果表明从孔隙提取得出的收缩特性与过滤试验中细颗粒的堵塞率之间存在直接关联。研究揭示了在过滤器设计中考虑颗粒形状的重要性,强调了颗粒形状对孔隙特征和过滤性能的重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of particle shape on the void space in granular materials: implications for the properties of granular filters

Effect of particle shape on the void space in granular materials: implications for the properties of granular filters

Effect of particle shape on the void space in granular materials: implications for the properties of granular filters

This study investigates the influence of particle shape on the void space morphology and topology in granular materials. Numerical samples with spherical and ellipsoidal particle shapes were generated using the discrete element method. A segmentation algorithm was used to extract the pore space characteristics. The results reveal that particle shape significantly affects both constriction and pore sizes, with distinctive features according to flatness index or elongation ratio, the former being more significant than the latter. The obtained results were validated by conducting numerical filtration tests, which illustrated a direct correlation between the constriction properties derived from the pore space extraction and the blockage rate of fine particles in the filtration tests. The study revealed the importance of considering particle shape in filter design, emphasising its significant impact on pore space characteristics and filtration performance.

Graphic abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信