Harsa Mitra, Evelyn Nonamaker, Ria D. Corder, Luis Solorio, Arezoo M. Ardekani
{"title":"迷你猪和人类皮肤组织的流变学和脂质特征:不同位置和深度的比较研究","authors":"Harsa Mitra, Evelyn Nonamaker, Ria D. Corder, Luis Solorio, Arezoo M. Ardekani","doi":"10.1007/s10439-024-03620-y","DOIUrl":null,"url":null,"abstract":"<p>Understanding the rheology of minipig and human skin is crucial for enhancing drug delivery methods, particularly for injections. Despite many studies on skin’s viscoelasticity, especially the subcutaneous layer, comparative analyses across different clinical sites are scarce, as is data on the impact of hydration or lipid levels. This study employs shear rheology and lipid analysis to evaluate viscoelasticity and lipid content across three anatomical locations—breast, belly, and neck and three different depth layers in Yucatan minipigs. It reports on how viscoelastic properties change with frequency, time, and strain, noting strain-stiffening and shear-thinning at high strain amplitudes. Human male and female abdominal tissues are also compared to minipig tissues, highlighting distinct viscoelastic traits and lipid’s role in them. The findings suggest the existence of species, anatomical location, tissue depth, and sex-based rheological differences. Furthermore, the use of male minipig models for studying human male subcutaneous tissue is discussed.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheological and Lipid Characterization of Minipig and Human Skin Tissue: A Comparative Study Across Different Locations and Depths\",\"authors\":\"Harsa Mitra, Evelyn Nonamaker, Ria D. Corder, Luis Solorio, Arezoo M. Ardekani\",\"doi\":\"10.1007/s10439-024-03620-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the rheology of minipig and human skin is crucial for enhancing drug delivery methods, particularly for injections. Despite many studies on skin’s viscoelasticity, especially the subcutaneous layer, comparative analyses across different clinical sites are scarce, as is data on the impact of hydration or lipid levels. This study employs shear rheology and lipid analysis to evaluate viscoelasticity and lipid content across three anatomical locations—breast, belly, and neck and three different depth layers in Yucatan minipigs. It reports on how viscoelastic properties change with frequency, time, and strain, noting strain-stiffening and shear-thinning at high strain amplitudes. Human male and female abdominal tissues are also compared to minipig tissues, highlighting distinct viscoelastic traits and lipid’s role in them. The findings suggest the existence of species, anatomical location, tissue depth, and sex-based rheological differences. Furthermore, the use of male minipig models for studying human male subcutaneous tissue is discussed.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03620-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03620-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Rheological and Lipid Characterization of Minipig and Human Skin Tissue: A Comparative Study Across Different Locations and Depths
Understanding the rheology of minipig and human skin is crucial for enhancing drug delivery methods, particularly for injections. Despite many studies on skin’s viscoelasticity, especially the subcutaneous layer, comparative analyses across different clinical sites are scarce, as is data on the impact of hydration or lipid levels. This study employs shear rheology and lipid analysis to evaluate viscoelasticity and lipid content across three anatomical locations—breast, belly, and neck and three different depth layers in Yucatan minipigs. It reports on how viscoelastic properties change with frequency, time, and strain, noting strain-stiffening and shear-thinning at high strain amplitudes. Human male and female abdominal tissues are also compared to minipig tissues, highlighting distinct viscoelastic traits and lipid’s role in them. The findings suggest the existence of species, anatomical location, tissue depth, and sex-based rheological differences. Furthermore, the use of male minipig models for studying human male subcutaneous tissue is discussed.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.