双馈变流器定子匝间短路故障的综合建模与分析

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chenguang Yan;Weixiang Wang;Qinzhi Liu;Zhangheng Liu;Jin Shu;Jikai Zhao;Baohui Zhang
{"title":"双馈变流器定子匝间短路故障的综合建模与分析","authors":"Chenguang Yan;Weixiang Wang;Qinzhi Liu;Zhangheng Liu;Jin Shu;Jikai Zhao;Baohui Zhang","doi":"10.1109/TASC.2024.3463255","DOIUrl":null,"url":null,"abstract":"With the gradual increase in high capacity doubly fed induction generators (DFIGs) in recent years, turn-to-turn short-circuit (TTSC) faults have become a greater threat. Notably, owing to the absence of an effective fault model, the specific TTSC fault behaviors of DFIGs remain to be clarified. This study proposes a comprehensive field–circuit coupling model of stator TTSC faults inside a DFIG, which captures a two-way interaction between the circuit and field domains. Meanwhile, the control strategy for DFIG back-to-back converters is also considered in this computational model. Moreover, the nonlinear resistance of the fault arc is simultaneously calculated by using a black box model in the circuit domain. A 1.5 MW DFIG with its control system was modeled and simulated to suffer a series of TTSC faults. Fault features, including the distributions of magnetic flux density, short-circuit currents, and terminal behaviors, were revealed, and the influencing factors regarding the fault types, severities and locations were discussed. The proposed comprehensive model and the derived characteristic signatures provide insights into the development of sensitive and reliable relay protection schemes for TTSC faults in DFIGs and are expected to promote subsequent research on fault detection and diagnosis in electric machinery controlled by power electronics.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 8","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Modeling and Analysis of Stator Turn-to-Turn Short-Circuit Faults in a DFIG\",\"authors\":\"Chenguang Yan;Weixiang Wang;Qinzhi Liu;Zhangheng Liu;Jin Shu;Jikai Zhao;Baohui Zhang\",\"doi\":\"10.1109/TASC.2024.3463255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the gradual increase in high capacity doubly fed induction generators (DFIGs) in recent years, turn-to-turn short-circuit (TTSC) faults have become a greater threat. Notably, owing to the absence of an effective fault model, the specific TTSC fault behaviors of DFIGs remain to be clarified. This study proposes a comprehensive field–circuit coupling model of stator TTSC faults inside a DFIG, which captures a two-way interaction between the circuit and field domains. Meanwhile, the control strategy for DFIG back-to-back converters is also considered in this computational model. Moreover, the nonlinear resistance of the fault arc is simultaneously calculated by using a black box model in the circuit domain. A 1.5 MW DFIG with its control system was modeled and simulated to suffer a series of TTSC faults. Fault features, including the distributions of magnetic flux density, short-circuit currents, and terminal behaviors, were revealed, and the influencing factors regarding the fault types, severities and locations were discussed. The proposed comprehensive model and the derived characteristic signatures provide insights into the development of sensitive and reliable relay protection schemes for TTSC faults in DFIGs and are expected to promote subsequent research on fault detection and diagnosis in electric machinery controlled by power electronics.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"34 8\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682803/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10682803/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着大容量双馈异步发电机(DFIG)的逐步增加,匝间短路(TTSC)故障已成为一个更大的威胁。值得注意的是,由于缺乏有效的故障模型,DFIG 的具体 TTSC 故障行为仍有待明确。本研究提出了一种全面的 DFIG 内部定子 TTSC 故障场-电路耦合模型,该模型捕捉了电路域和场域之间的双向交互。同时,该计算模型还考虑了 DFIG 背靠背变流器的控制策略。此外,故障电弧的非线性电阻也同时通过电路域的黑盒模型进行计算。对 1.5 兆瓦 DFIG 及其控制系统进行了建模和仿真,使其遭受一系列 TTSC 故障。研究揭示了故障特征,包括磁通密度分布、短路电流和终端行为,并讨论了故障类型、严重程度和位置的影响因素。所提出的综合模型和推导出的特征信号为开发针对双馈变流器 TTSC 故障的灵敏可靠的继电保护方案提供了启示,并有望推动电力电子控制电机故障检测和诊断的后续研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Modeling and Analysis of Stator Turn-to-Turn Short-Circuit Faults in a DFIG
With the gradual increase in high capacity doubly fed induction generators (DFIGs) in recent years, turn-to-turn short-circuit (TTSC) faults have become a greater threat. Notably, owing to the absence of an effective fault model, the specific TTSC fault behaviors of DFIGs remain to be clarified. This study proposes a comprehensive field–circuit coupling model of stator TTSC faults inside a DFIG, which captures a two-way interaction between the circuit and field domains. Meanwhile, the control strategy for DFIG back-to-back converters is also considered in this computational model. Moreover, the nonlinear resistance of the fault arc is simultaneously calculated by using a black box model in the circuit domain. A 1.5 MW DFIG with its control system was modeled and simulated to suffer a series of TTSC faults. Fault features, including the distributions of magnetic flux density, short-circuit currents, and terminal behaviors, were revealed, and the influencing factors regarding the fault types, severities and locations were discussed. The proposed comprehensive model and the derived characteristic signatures provide insights into the development of sensitive and reliable relay protection schemes for TTSC faults in DFIGs and are expected to promote subsequent research on fault detection and diagnosis in electric machinery controlled by power electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信