{"title":"心肌灌注闪烁成像中的膈下活动相关伪影。","authors":"Anja Strok,Barbara Guzic Salobir,Monika Stalc,Katja Zaletel","doi":"10.2478/raon-2024-0053","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nMyocardial perfusion imaging (MPI) with single photon emission computed tomography is an established non-invasive technique for assessing myocardial ischemia. This method involves the intravenous administration of a radiopharmaceutical that accumulates in the heart muscle proportional to regional blood flow. However, image quality and diagnostic accuracy can be compromised by various technical and patient-related factors, including high non-specific radiopharmaceutical uptake in abdominal organs such as the stomach, intestines, liver, and gall-bladder, leading to subdiaphragmatic artifacts. These artifacts are particularly problematic for evaluating inferior wall perfusion and often necessitate repeated imaging, which decreases gamma camera availability and prolongs imaging times.\r\n\r\nCONCLUSIONS\r\nDespite numerous investigated techniques to reduce interfering gastrointestinal activity, results have been inconsistent, and current MPI guidelines provide scant information on effective procedures to mitigate this issue. Based on our experience, some possible approaches to reducing artifacts include choosing stress testing with an exercise stress test, when possible, late imaging, fluid intake, and consuming carbonated water immediately before imaging.","PeriodicalId":21034,"journal":{"name":"Radiology and Oncology","volume":"12 1","pages":"313-319"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subdiaphragmatic activity-related artifacts in myocardial perfusion scintigraphy.\",\"authors\":\"Anja Strok,Barbara Guzic Salobir,Monika Stalc,Katja Zaletel\",\"doi\":\"10.2478/raon-2024-0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\r\\nMyocardial perfusion imaging (MPI) with single photon emission computed tomography is an established non-invasive technique for assessing myocardial ischemia. This method involves the intravenous administration of a radiopharmaceutical that accumulates in the heart muscle proportional to regional blood flow. However, image quality and diagnostic accuracy can be compromised by various technical and patient-related factors, including high non-specific radiopharmaceutical uptake in abdominal organs such as the stomach, intestines, liver, and gall-bladder, leading to subdiaphragmatic artifacts. These artifacts are particularly problematic for evaluating inferior wall perfusion and often necessitate repeated imaging, which decreases gamma camera availability and prolongs imaging times.\\r\\n\\r\\nCONCLUSIONS\\r\\nDespite numerous investigated techniques to reduce interfering gastrointestinal activity, results have been inconsistent, and current MPI guidelines provide scant information on effective procedures to mitigate this issue. Based on our experience, some possible approaches to reducing artifacts include choosing stress testing with an exercise stress test, when possible, late imaging, fluid intake, and consuming carbonated water immediately before imaging.\",\"PeriodicalId\":21034,\"journal\":{\"name\":\"Radiology and Oncology\",\"volume\":\"12 1\",\"pages\":\"313-319\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology and Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/raon-2024-0053\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology and Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/raon-2024-0053","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Subdiaphragmatic activity-related artifacts in myocardial perfusion scintigraphy.
BACKGROUND
Myocardial perfusion imaging (MPI) with single photon emission computed tomography is an established non-invasive technique for assessing myocardial ischemia. This method involves the intravenous administration of a radiopharmaceutical that accumulates in the heart muscle proportional to regional blood flow. However, image quality and diagnostic accuracy can be compromised by various technical and patient-related factors, including high non-specific radiopharmaceutical uptake in abdominal organs such as the stomach, intestines, liver, and gall-bladder, leading to subdiaphragmatic artifacts. These artifacts are particularly problematic for evaluating inferior wall perfusion and often necessitate repeated imaging, which decreases gamma camera availability and prolongs imaging times.
CONCLUSIONS
Despite numerous investigated techniques to reduce interfering gastrointestinal activity, results have been inconsistent, and current MPI guidelines provide scant information on effective procedures to mitigate this issue. Based on our experience, some possible approaches to reducing artifacts include choosing stress testing with an exercise stress test, when possible, late imaging, fluid intake, and consuming carbonated water immediately before imaging.
期刊介绍:
Radiology and Oncology is a multidisciplinary journal devoted to the publishing original and high quality scientific papers and review articles, pertinent to diagnostic and interventional radiology, computerized tomography, magnetic resonance, ultrasound, nuclear medicine, radiotherapy, clinical and experimental oncology, radiobiology, medical physics and radiation protection. Therefore, the scope of the journal is to cover beside radiology the diagnostic and therapeutic aspects in oncology, which distinguishes it from other journals in the field.