{"title":"探索无定形氧化钨的电子结构和锂扩散动力学","authors":"Chao Tang, Huachen Liu, Changlong Cai","doi":"10.1063/5.0229132","DOIUrl":null,"url":null,"abstract":"Density functional theory-based characterization of crystalline tungsten oxide has been well established. Nonetheless, there remains a partial gap in theoretical studies concerning the electrochemical characterization of amorphous tungsten oxide. The electronic structure and diffusion kinetics of amorphous tungsten oxide require a systematic theoretical study. Therefore, we employed second-generation Car–Parrinello molecular dynamics simulations and the density functional theory with HSE06 exchange–correlation hybrid functional to investigate the electronic properties and lithium kinetics of amorphous tungsten oxide (α-WOx, x = 3, 2.5, 2) models. The precise electronic properties of these structures were computed using the HSE06 hybrid functions. The diffusion properties of lithium were determined in the range of 1 × 10−7 to 5 × 10−7 cm2/s by ab initio molecular dynamics. The computational findings provide a critical atomic-scale understanding and contribute to the development of tungsten oxide-based electrochromic devices for practical applications.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the electronic structure and lithium diffusion kinetics of amorphous tungsten oxide\",\"authors\":\"Chao Tang, Huachen Liu, Changlong Cai\",\"doi\":\"10.1063/5.0229132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density functional theory-based characterization of crystalline tungsten oxide has been well established. Nonetheless, there remains a partial gap in theoretical studies concerning the electrochemical characterization of amorphous tungsten oxide. The electronic structure and diffusion kinetics of amorphous tungsten oxide require a systematic theoretical study. Therefore, we employed second-generation Car–Parrinello molecular dynamics simulations and the density functional theory with HSE06 exchange–correlation hybrid functional to investigate the electronic properties and lithium kinetics of amorphous tungsten oxide (α-WOx, x = 3, 2.5, 2) models. The precise electronic properties of these structures were computed using the HSE06 hybrid functions. The diffusion properties of lithium were determined in the range of 1 × 10−7 to 5 × 10−7 cm2/s by ab initio molecular dynamics. The computational findings provide a critical atomic-scale understanding and contribute to the development of tungsten oxide-based electrochromic devices for practical applications.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0229132\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0229132","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
基于密度泛函理论的晶体氧化钨表征方法已经成熟。然而,关于无定形氧化钨电化学特性的理论研究仍存在部分空白。非晶态氧化钨的电子结构和扩散动力学需要系统的理论研究。因此,我们采用第二代 Car-Parrinello 分子动力学模拟和密度泛函理论与 HSE06 交换相关混合函数来研究无定形氧化钨 (α-WOx, x = 3, 2.5, 2) 模型的电子特性和锂动力学。使用 HSE06 混合函数计算了这些结构的精确电子特性。利用 ab initio 分子动力学确定了锂在 1 × 10-7 至 5 × 10-7 cm2/s 范围内的扩散特性。这些计算结果提供了关键的原子尺度理解,有助于开发基于氧化钨的电致变色器件的实际应用。
Exploring the electronic structure and lithium diffusion kinetics of amorphous tungsten oxide
Density functional theory-based characterization of crystalline tungsten oxide has been well established. Nonetheless, there remains a partial gap in theoretical studies concerning the electrochemical characterization of amorphous tungsten oxide. The electronic structure and diffusion kinetics of amorphous tungsten oxide require a systematic theoretical study. Therefore, we employed second-generation Car–Parrinello molecular dynamics simulations and the density functional theory with HSE06 exchange–correlation hybrid functional to investigate the electronic properties and lithium kinetics of amorphous tungsten oxide (α-WOx, x = 3, 2.5, 2) models. The precise electronic properties of these structures were computed using the HSE06 hybrid functions. The diffusion properties of lithium were determined in the range of 1 × 10−7 to 5 × 10−7 cm2/s by ab initio molecular dynamics. The computational findings provide a critical atomic-scale understanding and contribute to the development of tungsten oxide-based electrochromic devices for practical applications.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.