Ming-Chun Qi, Xiao-Song Yang, Chen Xia, San-Qiu Liu
{"title":"非广延性等离子体中的卡普曼-瓦希米思动力和自生磁场","authors":"Ming-Chun Qi, Xiao-Song Yang, Chen Xia, San-Qiu Liu","doi":"10.1063/5.0228257","DOIUrl":null,"url":null,"abstract":"The non-stationary Karpman–Washimi ponderomotive force and self-generated magnetic field in an unmagnetized system are investigated in the context of nonextensive distribution based on the kinetic theory. The ponderomotive force, magnetization, and radiation power are obtained as functions of the nonextensive parameter q, wave frequency, and wave number. It is shown that the presence of high-velocity electrons leads to an increase in temporal and spatial variation parts of ponderomotive force, magnetization, and radiation power. Furthermore, the results indicate that the self-generated magnetic field driven by the Karpman–Washimi ponderomotive force primarily manifests as small-scale and low-frequency magnetic field.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Karpman–Washimi ponderomotive force and self-generated magnetic field in nonextensive plasmas\",\"authors\":\"Ming-Chun Qi, Xiao-Song Yang, Chen Xia, San-Qiu Liu\",\"doi\":\"10.1063/5.0228257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-stationary Karpman–Washimi ponderomotive force and self-generated magnetic field in an unmagnetized system are investigated in the context of nonextensive distribution based on the kinetic theory. The ponderomotive force, magnetization, and radiation power are obtained as functions of the nonextensive parameter q, wave frequency, and wave number. It is shown that the presence of high-velocity electrons leads to an increase in temporal and spatial variation parts of ponderomotive force, magnetization, and radiation power. Furthermore, the results indicate that the self-generated magnetic field driven by the Karpman–Washimi ponderomotive force primarily manifests as small-scale and low-frequency magnetic field.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0228257\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0228257","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Karpman–Washimi ponderomotive force and self-generated magnetic field in nonextensive plasmas
The non-stationary Karpman–Washimi ponderomotive force and self-generated magnetic field in an unmagnetized system are investigated in the context of nonextensive distribution based on the kinetic theory. The ponderomotive force, magnetization, and radiation power are obtained as functions of the nonextensive parameter q, wave frequency, and wave number. It is shown that the presence of high-velocity electrons leads to an increase in temporal and spatial variation parts of ponderomotive force, magnetization, and radiation power. Furthermore, the results indicate that the self-generated magnetic field driven by the Karpman–Washimi ponderomotive force primarily manifests as small-scale and low-frequency magnetic field.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.