利用遗传算法优化钻孔热能存储系统

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael Tetteh, Liangping Li, Matthew Minnick, Haiyan Zhou, Zhi Ye
{"title":"利用遗传算法优化钻孔热能存储系统","authors":"Michael Tetteh, Liangping Li, Matthew Minnick, Haiyan Zhou, Zhi Ye","doi":"10.1007/s11004-024-10157-2","DOIUrl":null,"url":null,"abstract":"<p>Borehole thermal energy storage (BTES) represents cutting-edge technology harnessing the Earth’s subsurface to store and extract thermal energy for heating and cooling purposes. Achieving optimal performance in BTES systems relies heavily on selecting the right operational parameters. Among these parameters, charging and discharging flow rates play a significant role in determining the amount of heat that can be effectively recovered from the system. In this study, we introduce a genetic algorithm as an optimization tool aimed at fine-tuning these operational parameters within a baseline BTES model. The BTES model was developed using FEFLOW software and simulated over a 3-year period. After each 3-year simulation, the genetic algorithm iteratively adjusted the operational parameters to attain the optimal configuration for maximizing heat recovery from the BTES system. Additional analysis was conducted to explore the impact of BTES system size and borehole spacing on heat recovery. Results indicate that the genetic algorithm effectively optimized parameters, leading to enhanced heat recovery efficiency. Moreover, the scenario studies highlighted that closer borehole spacing correlates with higher recovery efficiency.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm\",\"authors\":\"Michael Tetteh, Liangping Li, Matthew Minnick, Haiyan Zhou, Zhi Ye\",\"doi\":\"10.1007/s11004-024-10157-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Borehole thermal energy storage (BTES) represents cutting-edge technology harnessing the Earth’s subsurface to store and extract thermal energy for heating and cooling purposes. Achieving optimal performance in BTES systems relies heavily on selecting the right operational parameters. Among these parameters, charging and discharging flow rates play a significant role in determining the amount of heat that can be effectively recovered from the system. In this study, we introduce a genetic algorithm as an optimization tool aimed at fine-tuning these operational parameters within a baseline BTES model. The BTES model was developed using FEFLOW software and simulated over a 3-year period. After each 3-year simulation, the genetic algorithm iteratively adjusted the operational parameters to attain the optimal configuration for maximizing heat recovery from the BTES system. Additional analysis was conducted to explore the impact of BTES system size and borehole spacing on heat recovery. Results indicate that the genetic algorithm effectively optimized parameters, leading to enhanced heat recovery efficiency. Moreover, the scenario studies highlighted that closer borehole spacing correlates with higher recovery efficiency.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-024-10157-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10157-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

钻孔热能储存(BTES)是利用地球地下储存和提取热能用于供暖和制冷的尖端技术。要使 BTES 系统达到最佳性能,在很大程度上取决于选择正确的运行参数。在这些参数中,充放电流速在决定系统能有效回收的热量方面起着重要作用。在本研究中,我们引入了遗传算法作为优化工具,旨在对基准 BTES 模型中的这些运行参数进行微调。BTES 模型使用 FEFLOW 软件开发,并进行了为期 3 年的模拟。每次 3 年模拟后,遗传算法都会反复调整运行参数,以达到最佳配置,最大限度地提高 BTES 系统的热回收率。此外,还进行了其他分析,以探讨 BTES 系统的大小和钻孔间距对热回收的影响。结果表明,遗传算法有效地优化了参数,提高了热回收效率。此外,情景研究突出表明,钻孔间距越近,回收效率越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm

Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm

Borehole thermal energy storage (BTES) represents cutting-edge technology harnessing the Earth’s subsurface to store and extract thermal energy for heating and cooling purposes. Achieving optimal performance in BTES systems relies heavily on selecting the right operational parameters. Among these parameters, charging and discharging flow rates play a significant role in determining the amount of heat that can be effectively recovered from the system. In this study, we introduce a genetic algorithm as an optimization tool aimed at fine-tuning these operational parameters within a baseline BTES model. The BTES model was developed using FEFLOW software and simulated over a 3-year period. After each 3-year simulation, the genetic algorithm iteratively adjusted the operational parameters to attain the optimal configuration for maximizing heat recovery from the BTES system. Additional analysis was conducted to explore the impact of BTES system size and borehole spacing on heat recovery. Results indicate that the genetic algorithm effectively optimized parameters, leading to enhanced heat recovery efficiency. Moreover, the scenario studies highlighted that closer borehole spacing correlates with higher recovery efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信