Tarek Harb,Efthymios Ziogos,Núria Amat-Alarcon,Shenghan Lai,Gary Gerstenblith,Marios Arvanitis,Thorsten M Leucker
{"title":"过氧化物酶体增殖激活受体γ调节白细胞介素-6 诱导的人 HepG2 细胞中脂蛋白(a)基因表达。","authors":"Tarek Harb,Efthymios Ziogos,Núria Amat-Alarcon,Shenghan Lai,Gary Gerstenblith,Marios Arvanitis,Thorsten M Leucker","doi":"10.1097/fjc.0000000000001634","DOIUrl":null,"url":null,"abstract":"Lipoprotein(a) [Lp(a)] is a risk factor for coronary disease. Although levels are primarily genetically determined, data from patients with inflammatory diseases indicate that the inflammatory milieu is associated with increased Lp(a) levels. Lp(a) is synthesized in the liver and the LPA gene promoter contains an interleukin-6 (IL-6) responsive binding site, but the regulatory steps linking inflammation with hepatic Lp(a) synthesis are not well clarified. We explored the interplay between IL-6, peroxisome proliferator-activated receptor gamma (PPARγ), and Lp(a) synthesis in HepG2 cells. Through genetic mapping, a regulatory variant within the LPA promoter overlapping with a PPARγ binding site was identified. In in vitro experiments, IL-6-mediated LPA gene transcription was heightened with PPARγ knock-down and suppressed with pioglitazone, a PPARγ agonist. These results demonstrate an important role of PPARγ as a negative regulator of IL-6 induced hepatic Lp(a) production and may represent a new therapeutic target for patients with inflammatory conditions characterized by elevated Lp(a).","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":"42 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peroxisome Proliferator-Activated Receptor Gamma Regulates Interleukin-6-Induced Lipoprotein (a) Gene Expression in Human HepG2 Cells.\",\"authors\":\"Tarek Harb,Efthymios Ziogos,Núria Amat-Alarcon,Shenghan Lai,Gary Gerstenblith,Marios Arvanitis,Thorsten M Leucker\",\"doi\":\"10.1097/fjc.0000000000001634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lipoprotein(a) [Lp(a)] is a risk factor for coronary disease. Although levels are primarily genetically determined, data from patients with inflammatory diseases indicate that the inflammatory milieu is associated with increased Lp(a) levels. Lp(a) is synthesized in the liver and the LPA gene promoter contains an interleukin-6 (IL-6) responsive binding site, but the regulatory steps linking inflammation with hepatic Lp(a) synthesis are not well clarified. We explored the interplay between IL-6, peroxisome proliferator-activated receptor gamma (PPARγ), and Lp(a) synthesis in HepG2 cells. Through genetic mapping, a regulatory variant within the LPA promoter overlapping with a PPARγ binding site was identified. In in vitro experiments, IL-6-mediated LPA gene transcription was heightened with PPARγ knock-down and suppressed with pioglitazone, a PPARγ agonist. These results demonstrate an important role of PPARγ as a negative regulator of IL-6 induced hepatic Lp(a) production and may represent a new therapeutic target for patients with inflammatory conditions characterized by elevated Lp(a).\",\"PeriodicalId\":15212,\"journal\":{\"name\":\"Journal of Cardiovascular Pharmacology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/fjc.0000000000001634\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/fjc.0000000000001634","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Peroxisome Proliferator-Activated Receptor Gamma Regulates Interleukin-6-Induced Lipoprotein (a) Gene Expression in Human HepG2 Cells.
Lipoprotein(a) [Lp(a)] is a risk factor for coronary disease. Although levels are primarily genetically determined, data from patients with inflammatory diseases indicate that the inflammatory milieu is associated with increased Lp(a) levels. Lp(a) is synthesized in the liver and the LPA gene promoter contains an interleukin-6 (IL-6) responsive binding site, but the regulatory steps linking inflammation with hepatic Lp(a) synthesis are not well clarified. We explored the interplay between IL-6, peroxisome proliferator-activated receptor gamma (PPARγ), and Lp(a) synthesis in HepG2 cells. Through genetic mapping, a regulatory variant within the LPA promoter overlapping with a PPARγ binding site was identified. In in vitro experiments, IL-6-mediated LPA gene transcription was heightened with PPARγ knock-down and suppressed with pioglitazone, a PPARγ agonist. These results demonstrate an important role of PPARγ as a negative regulator of IL-6 induced hepatic Lp(a) production and may represent a new therapeutic target for patients with inflammatory conditions characterized by elevated Lp(a).
期刊介绍:
Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias.
Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.