Djemail Ismaili,Johannes Petersen,Carl Schulz,Thomas Eschenhagen,Jussi T Koivumäki,Torsten Christ
{"title":"PDE8 抑制及其对持续性心房颤动 ICa,L 的影响:评估作为潜在药物靶点的 PDE8。","authors":"Djemail Ismaili,Johannes Petersen,Carl Schulz,Thomas Eschenhagen,Jussi T Koivumäki,Torsten Christ","doi":"10.1097/fjc.0000000000001630","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation (AF) poses a significant therapeutic challenge with drug interventions showing only limited success. Phosphodiesterases (PDE) regulate cardiac electrical stability and may represent an interesting target. Recently, PDE8 inhibition was proposed as an antiarrhythmic intervention by increasing L-type Ca2+ current (ICa,L) and action potential duration (APD). However, the effect size of PDE8 inhibition on ICa,L and APD seems discrepant and effects on force are unknown. We investigated the impact of PDE8 inhibition on force using PF-04957325 in right atrial appendages, obtained from patients in sinus rhythm (SR) and with persistent AF (peAF) undergoing cardiac surgery. A computational model was employed to predict the effects of PDE8 inhibition on APD in SR and peAF. Results showed no increase in force after exposure to increasing concentrations of the PDE8 inhibitor PF-04957325 in either SR or peAF tissues. Furthermore, PDE8 inhibition did not affect the potency or efficacy of norepinephrine-induced inotropic effects in either group. Arrhythmic events triggered by norepinephrine were observed in both SR and peAF, but their frequency remained unaffected by PF-04957325 treatment. Computational modeling predicted that the reported increase in ICa,L induced by PDE8 inhibition would lead to substantial APD prolongation at all repolarization states, particularly in peAF. Our findings indicate that PDE8 inhibition does not significantly impact force or arrhythmogenicity in human atrial tissue.","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":"42 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDE8 Inhibition and Its Impact on ICa,L in Persistent Atrial Fibrillation: Evaluation of PDE8 as a Potential Drug Target.\",\"authors\":\"Djemail Ismaili,Johannes Petersen,Carl Schulz,Thomas Eschenhagen,Jussi T Koivumäki,Torsten Christ\",\"doi\":\"10.1097/fjc.0000000000001630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial fibrillation (AF) poses a significant therapeutic challenge with drug interventions showing only limited success. Phosphodiesterases (PDE) regulate cardiac electrical stability and may represent an interesting target. Recently, PDE8 inhibition was proposed as an antiarrhythmic intervention by increasing L-type Ca2+ current (ICa,L) and action potential duration (APD). However, the effect size of PDE8 inhibition on ICa,L and APD seems discrepant and effects on force are unknown. We investigated the impact of PDE8 inhibition on force using PF-04957325 in right atrial appendages, obtained from patients in sinus rhythm (SR) and with persistent AF (peAF) undergoing cardiac surgery. A computational model was employed to predict the effects of PDE8 inhibition on APD in SR and peAF. Results showed no increase in force after exposure to increasing concentrations of the PDE8 inhibitor PF-04957325 in either SR or peAF tissues. Furthermore, PDE8 inhibition did not affect the potency or efficacy of norepinephrine-induced inotropic effects in either group. Arrhythmic events triggered by norepinephrine were observed in both SR and peAF, but their frequency remained unaffected by PF-04957325 treatment. Computational modeling predicted that the reported increase in ICa,L induced by PDE8 inhibition would lead to substantial APD prolongation at all repolarization states, particularly in peAF. Our findings indicate that PDE8 inhibition does not significantly impact force or arrhythmogenicity in human atrial tissue.\",\"PeriodicalId\":15212,\"journal\":{\"name\":\"Journal of Cardiovascular Pharmacology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/fjc.0000000000001630\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/fjc.0000000000001630","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
PDE8 Inhibition and Its Impact on ICa,L in Persistent Atrial Fibrillation: Evaluation of PDE8 as a Potential Drug Target.
Atrial fibrillation (AF) poses a significant therapeutic challenge with drug interventions showing only limited success. Phosphodiesterases (PDE) regulate cardiac electrical stability and may represent an interesting target. Recently, PDE8 inhibition was proposed as an antiarrhythmic intervention by increasing L-type Ca2+ current (ICa,L) and action potential duration (APD). However, the effect size of PDE8 inhibition on ICa,L and APD seems discrepant and effects on force are unknown. We investigated the impact of PDE8 inhibition on force using PF-04957325 in right atrial appendages, obtained from patients in sinus rhythm (SR) and with persistent AF (peAF) undergoing cardiac surgery. A computational model was employed to predict the effects of PDE8 inhibition on APD in SR and peAF. Results showed no increase in force after exposure to increasing concentrations of the PDE8 inhibitor PF-04957325 in either SR or peAF tissues. Furthermore, PDE8 inhibition did not affect the potency or efficacy of norepinephrine-induced inotropic effects in either group. Arrhythmic events triggered by norepinephrine were observed in both SR and peAF, but their frequency remained unaffected by PF-04957325 treatment. Computational modeling predicted that the reported increase in ICa,L induced by PDE8 inhibition would lead to substantial APD prolongation at all repolarization states, particularly in peAF. Our findings indicate that PDE8 inhibition does not significantly impact force or arrhythmogenicity in human atrial tissue.
期刊介绍:
Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias.
Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.