具有机器学习意识的潜伏芽孢杆菌全基因组代谢模型完善了基因表达和细胞生长预测

IF 3.784 3区 化学 Q1 Chemistry
Xinyu Bi, Yang Cheng, Xueqin Lv, Yanfeng Liu, Jianghua Li, Guocheng Du, Jian Chen, Long Liu
{"title":"具有机器学习意识的潜伏芽孢杆菌全基因组代谢模型完善了基因表达和细胞生长预测","authors":"Xinyu Bi, Yang Cheng, Xueqin Lv, Yanfeng Liu, Jianghua Li, Guocheng Du, Jian Chen, Long Liu","doi":"10.1002/advs.202408705","DOIUrl":null,"url":null,"abstract":"Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi‐omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi‐omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of <jats:italic>Bacillus subtilis</jats:italic> is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high‐throughput experimental data shows that EM_<jats:italic>i</jats:italic>Bsu1209‐ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high‐performance multi‐omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi‐Omics, Machine Learning‐Aware, Genome‐Wide Metabolic Model of Bacillus Subtilis Refines the Gene Expression and Cell Growth Prediction\",\"authors\":\"Xinyu Bi, Yang Cheng, Xueqin Lv, Yanfeng Liu, Jianghua Li, Guocheng Du, Jian Chen, Long Liu\",\"doi\":\"10.1002/advs.202408705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi‐omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi‐omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of <jats:italic>Bacillus subtilis</jats:italic> is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high‐throughput experimental data shows that EM_<jats:italic>i</jats:italic>Bsu1209‐ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high‐performance multi‐omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202408705\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202408705","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

鉴于广泛的异质性和可变性,通过分析多组学数据集来理解细胞功能和调控机制变得极具挑战性。在此,我们提出了一个多组学机器学习和代谢网络模型的综合建模框架,涵盖了多个尺度的各种细胞生物学过程。该模型在广泛的枯草芽孢杆菌规范化汇编上得到了验证,其中包括环境扰动、转录调控、信号转导、蛋白质翻译和生长测量的基因表达数据。与高通量实验数据的比较表明,在此基础上构建的 EM_iBsu1209-ME 能准确预测不同条件下 605 个基因的表达和 23 种代谢物的合成。这项研究为构建综合性生物数据库和高性能多组学代谢模型,从而在探索细胞基因型和表型的复杂机制方面实现精确预测分析铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Multi‐Omics, Machine Learning‐Aware, Genome‐Wide Metabolic Model of Bacillus Subtilis Refines the Gene Expression and Cell Growth Prediction

A Multi‐Omics, Machine Learning‐Aware, Genome‐Wide Metabolic Model of Bacillus Subtilis Refines the Gene Expression and Cell Growth Prediction
Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi‐omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi‐omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of Bacillus subtilis is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high‐throughput experimental data shows that EM_iBsu1209‐ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high‐performance multi‐omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信