用基于量子化学的深度学习模型预测 DNA 反应

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Likun Wang, Na Li, Mengyao Cao, Yun Zhu, Xiewei Xiong, Li Li, Tong Zhu, Hao Pei
{"title":"用基于量子化学的深度学习模型预测 DNA 反应","authors":"Likun Wang, Na Li, Mengyao Cao, Yun Zhu, Xiewei Xiong, Li Li, Tong Zhu, Hao Pei","doi":"10.1002/advs.202409880","DOIUrl":null,"url":null,"abstract":"In this study, a deep learning model based on quantum chemistry is introduced to enhance the accuracy and efficiency of predicting DNA reaction parameters. By integrating quantum chemical calculations with self-designed descriptor matrices, the model offers a comprehensive description of energy variations and considers a broad range of relevant factors. To overcome the challenge of limited labeled data, an active learning method is employed. The results demonstrate that this model outperforms existing methods in predicting DNA hybridization free energies and strand displacement rate constants, thus advancing the understanding of DNA molecular interactions, and aiding in the precise design and optimization of DNA-based systems.","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting DNA Reactions with a Quantum Chemistry-Based Deep Learning Model\",\"authors\":\"Likun Wang, Na Li, Mengyao Cao, Yun Zhu, Xiewei Xiong, Li Li, Tong Zhu, Hao Pei\",\"doi\":\"10.1002/advs.202409880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a deep learning model based on quantum chemistry is introduced to enhance the accuracy and efficiency of predicting DNA reaction parameters. By integrating quantum chemical calculations with self-designed descriptor matrices, the model offers a comprehensive description of energy variations and considers a broad range of relevant factors. To overcome the challenge of limited labeled data, an active learning method is employed. The results demonstrate that this model outperforms existing methods in predicting DNA hybridization free energies and strand displacement rate constants, thus advancing the understanding of DNA molecular interactions, and aiding in the precise design and optimization of DNA-based systems.\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202409880\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202409880","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种基于量子化学的深度学习模型,以提高预测 DNA 反应参数的准确性和效率。通过将量子化学计算与自主设计的描述矩阵相结合,该模型提供了对能量变化的全面描述,并考虑了广泛的相关因素。为了克服标注数据有限的挑战,该模型采用了主动学习方法。结果表明,该模型在预测 DNA 杂交自由能和链位移速率常数方面优于现有方法,从而推进了对 DNA 分子相互作用的理解,并有助于基于 DNA 的系统的精确设计和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting DNA Reactions with a Quantum Chemistry-Based Deep Learning Model

Predicting DNA Reactions with a Quantum Chemistry-Based Deep Learning Model
In this study, a deep learning model based on quantum chemistry is introduced to enhance the accuracy and efficiency of predicting DNA reaction parameters. By integrating quantum chemical calculations with self-designed descriptor matrices, the model offers a comprehensive description of energy variations and considers a broad range of relevant factors. To overcome the challenge of limited labeled data, an active learning method is employed. The results demonstrate that this model outperforms existing methods in predicting DNA hybridization free energies and strand displacement rate constants, thus advancing the understanding of DNA molecular interactions, and aiding in the precise design and optimization of DNA-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信