氧化铁在压力和温度下的单斜变形和磁性转变

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Xiang Li, Elena Bykova, Denis Vasiukov, Georgios Aprilis, Stella Chariton, Valerio Cerantola, Maxim Bykov, Susanne Müller, Anna Pakhomova, Fariia I. Akbar, Elena Mukhina, Innokenty Kantor, Konstantin Glazyrin, Davide Comboni, Aleksandr I. Chumakov, Catherine McCammon, Leonid Dubrovinsky, Carmen Sanchez-Valle, Ilya Kupenko
{"title":"氧化铁在压力和温度下的单斜变形和磁性转变","authors":"Xiang Li, Elena Bykova, Denis Vasiukov, Georgios Aprilis, Stella Chariton, Valerio Cerantola, Maxim Bykov, Susanne Müller, Anna Pakhomova, Fariia I. Akbar, Elena Mukhina, Innokenty Kantor, Konstantin Glazyrin, Davide Comboni, Aleksandr I. Chumakov, Catherine McCammon, Leonid Dubrovinsky, Carmen Sanchez-Valle, Ilya Kupenko","doi":"10.1038/s42005-024-01797-1","DOIUrl":null,"url":null,"abstract":"Fe1-xO, although chemically simple, possesses a complex structural and magnetic phase diagram. The crystal structures of Fe1-xO and its magnetic properties at extreme conditions are still a matter of debate. Here, we performed a systematic investigation on Fe0.94O up to 94 GPa and 1700 K using synchrotron X-ray diffraction and synchrotron Mössbauer source spectroscopy. We observe a transition of Fe0.94O to the monoclinic phases above 40 GPa and at high temperatures and use the group theory analysis of the observed phases to discuss their properties and their relation to the ambient pressure phases. The Mössbauer spectra of the rhombohedral and the room temperature monoclinic phase contain a component attributed to Fe2.5+, caused by the electron exchange between the Fe3+ defect and neighboring Fe2+ atoms. Our results present a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and show the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions. This work concerns a systematic study of Fe1-xO employing complementary methods of powder and single-crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy up to 94 GPa and 1700 K. It presents a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and demonstrates the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01797-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Monoclinic distortion and magnetic transitions in FeO under pressure and temperature\",\"authors\":\"Xiang Li, Elena Bykova, Denis Vasiukov, Georgios Aprilis, Stella Chariton, Valerio Cerantola, Maxim Bykov, Susanne Müller, Anna Pakhomova, Fariia I. Akbar, Elena Mukhina, Innokenty Kantor, Konstantin Glazyrin, Davide Comboni, Aleksandr I. Chumakov, Catherine McCammon, Leonid Dubrovinsky, Carmen Sanchez-Valle, Ilya Kupenko\",\"doi\":\"10.1038/s42005-024-01797-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fe1-xO, although chemically simple, possesses a complex structural and magnetic phase diagram. The crystal structures of Fe1-xO and its magnetic properties at extreme conditions are still a matter of debate. Here, we performed a systematic investigation on Fe0.94O up to 94 GPa and 1700 K using synchrotron X-ray diffraction and synchrotron Mössbauer source spectroscopy. We observe a transition of Fe0.94O to the monoclinic phases above 40 GPa and at high temperatures and use the group theory analysis of the observed phases to discuss their properties and their relation to the ambient pressure phases. The Mössbauer spectra of the rhombohedral and the room temperature monoclinic phase contain a component attributed to Fe2.5+, caused by the electron exchange between the Fe3+ defect and neighboring Fe2+ atoms. Our results present a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and show the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions. This work concerns a systematic study of Fe1-xO employing complementary methods of powder and single-crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy up to 94 GPa and 1700 K. It presents a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and demonstrates the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01797-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01797-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01797-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Fe1-xO 虽然化学性质简单,但具有复杂的结构和磁性相图。Fe1-xO 的晶体结构及其在极端条件下的磁性能仍是一个争论不休的问题。在此,我们利用同步辐射 X 射线衍射和同步辐射莫斯鲍尔源光谱对高达 94 GPa 和 1700 K 的 Fe0.94O 进行了系统研究。我们观察到在 40 GPa 以上和高温条件下,Fe0.94O 向单斜晶相的转变,并利用对观察到的晶相的群论分析来讨论它们的性质及其与常压晶相的关系。斜方晶相和室温单斜晶相的莫斯鲍尔光谱包含一个归因于 Fe2.5+ 的成分,这是由 Fe3+ 缺陷和邻近 Fe2+ 原子间的电子交换引起的。我们的研究结果展示了 Fe1-xO 的结构和磁性过渡压力-温度图,并显示了简单的 Fe1-xO 二元氧化物在极端条件下的复杂物理化学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monoclinic distortion and magnetic transitions in FeO under pressure and temperature

Monoclinic distortion and magnetic transitions in FeO under pressure and temperature

Monoclinic distortion and magnetic transitions in FeO under pressure and temperature
Fe1-xO, although chemically simple, possesses a complex structural and magnetic phase diagram. The crystal structures of Fe1-xO and its magnetic properties at extreme conditions are still a matter of debate. Here, we performed a systematic investigation on Fe0.94O up to 94 GPa and 1700 K using synchrotron X-ray diffraction and synchrotron Mössbauer source spectroscopy. We observe a transition of Fe0.94O to the monoclinic phases above 40 GPa and at high temperatures and use the group theory analysis of the observed phases to discuss their properties and their relation to the ambient pressure phases. The Mössbauer spectra of the rhombohedral and the room temperature monoclinic phase contain a component attributed to Fe2.5+, caused by the electron exchange between the Fe3+ defect and neighboring Fe2+ atoms. Our results present a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and show the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions. This work concerns a systematic study of Fe1-xO employing complementary methods of powder and single-crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy up to 94 GPa and 1700 K. It presents a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and demonstrates the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信