高强度低合金钢应变诱发沉淀和再结晶的物理平均场模型

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Maria‐Ioanna T. Tzini, Gregory N. Haidemenopoulos
{"title":"高强度低合金钢应变诱发沉淀和再结晶的物理平均场模型","authors":"Maria‐Ioanna T. Tzini, Gregory N. Haidemenopoulos","doi":"10.1002/srin.202400493","DOIUrl":null,"url":null,"abstract":"A physically based mean field model developed to predict the microstructural evolution during the thermomechanical control process of X70 high‐strength low‐alloy (HSLA) steels is presented. The physically based mean field model incorporates a new integrated precipitation and recrystallization model developed to describe the interaction between strain‐induced precipitation of niobium and titanium carbonitrides and static recrystallization of austenite. The integrated model considers an effective Zener pinning force for the multimodal particle size distribution (PSD) of precipitates, an effective grain‐boundary mobility for the solute drag effect of niobium, and an inhomogeneous stored energy for austenite recrystallization. Given a processing route, the model predicts the variation of austenite grain size, recrystallized and precipitated fractions, and evolution of PSDs of precipitates. Model predictions reveal an excellent agreement with experimental grain size measurements and a final average ferrite grain size of 3.81 μm is achieved. The proposed model considers the heterogeneous nature of recrystallization and precipitation and can contribute to the process design of the HSLA and microalloyed steels.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physically Based Mean Field Model for Strain‐Induced Precipitation and Recrystallization in High‐Strength Low‐Alloy Steels\",\"authors\":\"Maria‐Ioanna T. Tzini, Gregory N. Haidemenopoulos\",\"doi\":\"10.1002/srin.202400493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A physically based mean field model developed to predict the microstructural evolution during the thermomechanical control process of X70 high‐strength low‐alloy (HSLA) steels is presented. The physically based mean field model incorporates a new integrated precipitation and recrystallization model developed to describe the interaction between strain‐induced precipitation of niobium and titanium carbonitrides and static recrystallization of austenite. The integrated model considers an effective Zener pinning force for the multimodal particle size distribution (PSD) of precipitates, an effective grain‐boundary mobility for the solute drag effect of niobium, and an inhomogeneous stored energy for austenite recrystallization. Given a processing route, the model predicts the variation of austenite grain size, recrystallized and precipitated fractions, and evolution of PSDs of precipitates. Model predictions reveal an excellent agreement with experimental grain size measurements and a final average ferrite grain size of 3.81 μm is achieved. The proposed model considers the heterogeneous nature of recrystallization and precipitation and can contribute to the process design of the HSLA and microalloyed steels.\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/srin.202400493\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400493","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于平均场的物理模型,用于预测 X70 高强度低合金钢 (HSLA) 热机械控制过程中的微观结构演变。该基于物理的平均场模型包含一个新的析出和再结晶综合模型,用于描述应变诱导的铌和钛碳氮化物析出与奥氏体静态再结晶之间的相互作用。该综合模型考虑了析出物的多模态粒度分布 (PSD) 的有效齐纳引力、铌的溶质拖曳效应的有效晶界移动性以及奥氏体再结晶的非均质储能。在给定加工路线的情况下,模型预测了奥氏体晶粒大小、再结晶和析出部分的变化,以及析出物 PSD 的演变。模型预测结果与实验晶粒尺寸测量结果非常吻合,最终铁素体平均晶粒尺寸为 3.81 μm。所提出的模型考虑了再结晶和析出的异质性,有助于 HSLA 和微合金钢的工艺设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Physically Based Mean Field Model for Strain‐Induced Precipitation and Recrystallization in High‐Strength Low‐Alloy Steels
A physically based mean field model developed to predict the microstructural evolution during the thermomechanical control process of X70 high‐strength low‐alloy (HSLA) steels is presented. The physically based mean field model incorporates a new integrated precipitation and recrystallization model developed to describe the interaction between strain‐induced precipitation of niobium and titanium carbonitrides and static recrystallization of austenite. The integrated model considers an effective Zener pinning force for the multimodal particle size distribution (PSD) of precipitates, an effective grain‐boundary mobility for the solute drag effect of niobium, and an inhomogeneous stored energy for austenite recrystallization. Given a processing route, the model predicts the variation of austenite grain size, recrystallized and precipitated fractions, and evolution of PSDs of precipitates. Model predictions reveal an excellent agreement with experimental grain size measurements and a final average ferrite grain size of 3.81 μm is achieved. The proposed model considers the heterogeneous nature of recrystallization and precipitation and can contribute to the process design of the HSLA and microalloyed steels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信