微观结构和工艺设计对 4 wt%中锰钢塑性稳定性的影响

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Oguz Gülbay, Klaus Büßenschütt, Aleksandra Kozlowska, Adam Grajcar, Alexander Gramlich
{"title":"微观结构和工艺设计对 4 wt%中锰钢塑性稳定性的影响","authors":"Oguz Gülbay, Klaus Büßenschütt, Aleksandra Kozlowska, Adam Grajcar, Alexander Gramlich","doi":"10.1002/srin.202400575","DOIUrl":null,"url":null,"abstract":"The influence of different microstructures on the plastic stability of an air‐hardened industrially produced medium‐manganese steel is presented. For this matter, heat treatment parameters before and during intercritical annealing (IA) are varied, to achieve different microstructures. The resulting duplex microstructure is consecutively tested by tensile tests, which are monitored by digital image correlation (DIC) to obtain information on the local plastic deformation. The tests are accompanied by microstructure investigations using optical, scanning electron, and transmission electron microscopy. Finally, X‐ray and electron backscatter diffraction experiments are performed before and after deformation, to describe the altering phase fractions. It is demonstrated that the effect of the deformation temperature prior to IA treatment has a significant influence on the duplex microstructure, as it changes the austenite morphology from lamellar to globular and increases the phase fraction. The change in austenite phase fraction and morphology results in a higher yield strength (≈100 MPa), as well as higher uniform and total elongations (+2% and +5%, respectively). The DIC and tensile tests reveal that these differences in the austenite phase lead to a complete change in the strain hardening behavior, from continuous flow to discontinuous serrated flow, with clearly visible deformation bands during plastic deformation.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"209 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Microstructure and Process Design on the Plastic Stability of 4 wt% Medium‐Manganese Steels\",\"authors\":\"Oguz Gülbay, Klaus Büßenschütt, Aleksandra Kozlowska, Adam Grajcar, Alexander Gramlich\",\"doi\":\"10.1002/srin.202400575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of different microstructures on the plastic stability of an air‐hardened industrially produced medium‐manganese steel is presented. For this matter, heat treatment parameters before and during intercritical annealing (IA) are varied, to achieve different microstructures. The resulting duplex microstructure is consecutively tested by tensile tests, which are monitored by digital image correlation (DIC) to obtain information on the local plastic deformation. The tests are accompanied by microstructure investigations using optical, scanning electron, and transmission electron microscopy. Finally, X‐ray and electron backscatter diffraction experiments are performed before and after deformation, to describe the altering phase fractions. It is demonstrated that the effect of the deformation temperature prior to IA treatment has a significant influence on the duplex microstructure, as it changes the austenite morphology from lamellar to globular and increases the phase fraction. The change in austenite phase fraction and morphology results in a higher yield strength (≈100 MPa), as well as higher uniform and total elongations (+2% and +5%, respectively). The DIC and tensile tests reveal that these differences in the austenite phase lead to a complete change in the strain hardening behavior, from continuous flow to discontinuous serrated flow, with clearly visible deformation bands during plastic deformation.\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"209 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/srin.202400575\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400575","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了不同微观结构对工业生产的空气硬化中锰钢塑性稳定性的影响。为此,改变了临界退火(IA)前和退火过程中的热处理参数,以获得不同的微观结构。由此产生的双相微观结构通过拉伸试验进行连续测试,并通过数字图像相关(DIC)进行监测,以获得局部塑性变形的信息。在进行测试的同时,还使用光学显微镜、扫描电子显微镜和透射电子显微镜对微观结构进行研究。最后,在变形前后进行了 X 射线和电子反向散射衍射实验,以描述相分数的变化。结果表明,IA 处理前的变形温度对双相微观结构有重大影响,因为它使奥氏体形态从片状变为球状,并增加了相分数。奥氏体相分数和形态的变化导致了更高的屈服强度(≈100 兆帕)以及更高的均匀伸长率和总伸长率(分别为 +2% 和 +5%)。DIC 和拉伸试验表明,奥氏体相的这些变化导致应变硬化行为发生了彻底改变,从连续流动转变为不连续的锯齿流动,在塑性变形过程中出现了清晰可见的变形带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Influence of Microstructure and Process Design on the Plastic Stability of 4 wt% Medium‐Manganese Steels
The influence of different microstructures on the plastic stability of an air‐hardened industrially produced medium‐manganese steel is presented. For this matter, heat treatment parameters before and during intercritical annealing (IA) are varied, to achieve different microstructures. The resulting duplex microstructure is consecutively tested by tensile tests, which are monitored by digital image correlation (DIC) to obtain information on the local plastic deformation. The tests are accompanied by microstructure investigations using optical, scanning electron, and transmission electron microscopy. Finally, X‐ray and electron backscatter diffraction experiments are performed before and after deformation, to describe the altering phase fractions. It is demonstrated that the effect of the deformation temperature prior to IA treatment has a significant influence on the duplex microstructure, as it changes the austenite morphology from lamellar to globular and increases the phase fraction. The change in austenite phase fraction and morphology results in a higher yield strength (≈100 MPa), as well as higher uniform and total elongations (+2% and +5%, respectively). The DIC and tensile tests reveal that these differences in the austenite phase lead to a complete change in the strain hardening behavior, from continuous flow to discontinuous serrated flow, with clearly visible deformation bands during plastic deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信