通过机器学习提高基于纳米材料的癌症光学光谱检测能力

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Célia Sahli, Kenry
{"title":"通过机器学习提高基于纳米材料的癌症光学光谱检测能力","authors":"Célia Sahli, Kenry","doi":"10.1021/acsmaterialslett.4c01267","DOIUrl":null,"url":null,"abstract":"Optical spectroscopic techniques relying on light–matter interactions, such as Raman scattering, fluorescence, and infrared absorbance spectroscopy, offer numerous advantages to complement existing cancer detection methods. By combining these spectroscopic techniques with rationally engineered nanomaterials, cancer cells and tissues can be more specifically targeted, and the readout signals can be substantially enhanced. Further integration of machine learning with its potential to identify subtle malignancy indicators may significantly improve the capability of nanomaterial-enabled optical spectroscopy to delineate cancer more precisely. As such, the synergistic integration of optical spectroscopy, nanomaterials, and machine learning may provide unique opportunities for the development of more selective, sensitive, and accurate cancer diagnostic technologies, which can be leveraged to optimize therapeutic strategies and minimize unnecessary interventions to ultimately enhance patient survival outcomes. This Perspective describes numerous strategies incorporating optical spectroscopy, nanomaterials, and machine learning to improve cancer detection and summarizes our outlook on the current landscape and potential future directions of this emerging field.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Nanomaterial-Based Optical Spectroscopic Detection of Cancer through Machine Learning\",\"authors\":\"Célia Sahli, Kenry\",\"doi\":\"10.1021/acsmaterialslett.4c01267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical spectroscopic techniques relying on light–matter interactions, such as Raman scattering, fluorescence, and infrared absorbance spectroscopy, offer numerous advantages to complement existing cancer detection methods. By combining these spectroscopic techniques with rationally engineered nanomaterials, cancer cells and tissues can be more specifically targeted, and the readout signals can be substantially enhanced. Further integration of machine learning with its potential to identify subtle malignancy indicators may significantly improve the capability of nanomaterial-enabled optical spectroscopy to delineate cancer more precisely. As such, the synergistic integration of optical spectroscopy, nanomaterials, and machine learning may provide unique opportunities for the development of more selective, sensitive, and accurate cancer diagnostic technologies, which can be leveraged to optimize therapeutic strategies and minimize unnecessary interventions to ultimately enhance patient survival outcomes. This Perspective describes numerous strategies incorporating optical spectroscopy, nanomaterials, and machine learning to improve cancer detection and summarizes our outlook on the current landscape and potential future directions of this emerging field.\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialslett.4c01267\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01267","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

拉曼散射、荧光和红外吸收光谱等依靠光-物质相互作用的光学光谱技术在补充现有癌症检测方法方面具有众多优势。通过将这些光谱技术与合理设计的纳米材料相结合,可以更有针对性地靶向癌细胞和组织,并大大增强读出信号。进一步整合机器学习及其识别微妙恶性肿瘤指标的潜力,可显著提高纳米材料光学光谱学更精确地划分癌症的能力。因此,光学光谱学、纳米材料和机器学习的协同整合可为开发选择性更强、更灵敏、更准确的癌症诊断技术提供独特的机会,并可利用这些技术优化治疗策略,尽量减少不必要的干预,最终提高患者的生存率。本视角介绍了结合光学光谱学、纳米材料和机器学习来改进癌症检测的多种策略,并总结了我们对这一新兴领域的现状和未来潜在发展方向的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Nanomaterial-Based Optical Spectroscopic Detection of Cancer through Machine Learning

Enhancing Nanomaterial-Based Optical Spectroscopic Detection of Cancer through Machine Learning
Optical spectroscopic techniques relying on light–matter interactions, such as Raman scattering, fluorescence, and infrared absorbance spectroscopy, offer numerous advantages to complement existing cancer detection methods. By combining these spectroscopic techniques with rationally engineered nanomaterials, cancer cells and tissues can be more specifically targeted, and the readout signals can be substantially enhanced. Further integration of machine learning with its potential to identify subtle malignancy indicators may significantly improve the capability of nanomaterial-enabled optical spectroscopy to delineate cancer more precisely. As such, the synergistic integration of optical spectroscopy, nanomaterials, and machine learning may provide unique opportunities for the development of more selective, sensitive, and accurate cancer diagnostic technologies, which can be leveraged to optimize therapeutic strategies and minimize unnecessary interventions to ultimately enhance patient survival outcomes. This Perspective describes numerous strategies incorporating optical spectroscopy, nanomaterials, and machine learning to improve cancer detection and summarizes our outlook on the current landscape and potential future directions of this emerging field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信