筛选与 KDR 表达相关的 miRNA 以阻碍肾透明细胞癌的肿瘤发生

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kaviyaprabha R, Miji TV, Suseela R, Muthusami S, Thangaleela S, Almoallim HS, Priyadarshini S, Bharathi M
{"title":"筛选与 KDR 表达相关的 miRNA 以阻碍肾透明细胞癌的肿瘤发生","authors":"Kaviyaprabha R, Miji TV, Suseela R, Muthusami S, Thangaleela S, Almoallim HS, Priyadarshini S, Bharathi M","doi":"10.2174/0115680096321287240826065718","DOIUrl":null,"url":null,"abstract":"Introduction: This study delved into the role of Kinase Insert Domain Receptor (KDR) and its associated miRNAs in renal cell carcinoma through an extensive computational analysis. The potential of our findings to guide future research in this area is significant. Methods: Our methods, which included the use of UALCAN and GEPIA2 databases, as well as miRDB, MirDIP, miRNet v2.0, miRTargetLink, MiEAA v2.1, TarBase v8.0, INTERNET, and miRTarBass, were instrumental in identifying the regulation of miRNA associated with KDR expression. The predicted miRNA was validated with the TCGA-KIRC patients’ samples by implementing CancerMIRNome. The TargetScanHuman v8.0 was implemented to identify the associations between human miRNAs and KDR. A Patch Dock server analyzed the interactions between hsa-miR-200b-3p-KDR and hsa-miR-200b-3p with KDR. Results: The KDR expression rate was investigated in the Kidney Renal Cell Carcinoma (KIRC) samples, and adjacent normal tissues revealed that the expression rate was significantly higher than the normal samples, which was evident from the strong statistical significance (P = 1.63e-12). Likely, the KDR ex-pression rate was estimated as high at tumor grade 1 and gradually decreased till the metastasis grade, reducing the survival rate of the KIRC patients. To identify these signals early, we predicted a miRNA that could trigger the expression of KDR. Furthermore, we uncovered the potential associations between miR-200c-3p expressions by regulating KDR towards the progression of KIRC. Discussion: Upon examining the outcome, it became evident that miR-200c-3p was significantly down-regulated in KIRC compared to the normal samples. Moreover, the negative correlation was obtained for hsa-miR-200c-3p (R = - 0.276) along with the KDR expression describing that the increased rate of hsa-miR-200c-3p might reduce the KDR expression rate, which may suppress the KIRC initiation or progres-sion. Conclusion: The in-silico analysis indicated that the significant increase in KDR expression during the initiation of KIRC could serve as an early diagnostic marker. Moreover, KDR could be utilized to identify advancements in KIRC stages. Additionally, hsa-miR-200c-3p was identified as a potential regulator capable of downregulating and upregulating KDR expression among the 24 miRNAs screened. This find-ing holds promise for future research endeavors. Concurrent administration of the FDA-approved 5-fluor-ouracil with KIRC drugs, such as sorafenib, zidovudine, and everolimus, may have the potential to en-hance the therapeutic efficacy in downregulating hsa-miR-200c-3p. However, further in vitro studies are imperative to validate these findings and gain a comprehensive understanding of the intricate regulatory interplay involving hsa-miR-200c-3p, KDR, 5-fluorouracil, and other FDA-approved drugs for the treat-ment of KIRC. This will facilitate the identification of KIRC stage progression and its underlying pre-ventative mechanisms.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening miRNAs to Hinder the Tumorigenesis of Renal Clear Cell Carcinoma Associated with KDR Expression\",\"authors\":\"Kaviyaprabha R, Miji TV, Suseela R, Muthusami S, Thangaleela S, Almoallim HS, Priyadarshini S, Bharathi M\",\"doi\":\"10.2174/0115680096321287240826065718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: This study delved into the role of Kinase Insert Domain Receptor (KDR) and its associated miRNAs in renal cell carcinoma through an extensive computational analysis. The potential of our findings to guide future research in this area is significant. Methods: Our methods, which included the use of UALCAN and GEPIA2 databases, as well as miRDB, MirDIP, miRNet v2.0, miRTargetLink, MiEAA v2.1, TarBase v8.0, INTERNET, and miRTarBass, were instrumental in identifying the regulation of miRNA associated with KDR expression. The predicted miRNA was validated with the TCGA-KIRC patients’ samples by implementing CancerMIRNome. The TargetScanHuman v8.0 was implemented to identify the associations between human miRNAs and KDR. A Patch Dock server analyzed the interactions between hsa-miR-200b-3p-KDR and hsa-miR-200b-3p with KDR. Results: The KDR expression rate was investigated in the Kidney Renal Cell Carcinoma (KIRC) samples, and adjacent normal tissues revealed that the expression rate was significantly higher than the normal samples, which was evident from the strong statistical significance (P = 1.63e-12). Likely, the KDR ex-pression rate was estimated as high at tumor grade 1 and gradually decreased till the metastasis grade, reducing the survival rate of the KIRC patients. To identify these signals early, we predicted a miRNA that could trigger the expression of KDR. Furthermore, we uncovered the potential associations between miR-200c-3p expressions by regulating KDR towards the progression of KIRC. Discussion: Upon examining the outcome, it became evident that miR-200c-3p was significantly down-regulated in KIRC compared to the normal samples. Moreover, the negative correlation was obtained for hsa-miR-200c-3p (R = - 0.276) along with the KDR expression describing that the increased rate of hsa-miR-200c-3p might reduce the KDR expression rate, which may suppress the KIRC initiation or progres-sion. Conclusion: The in-silico analysis indicated that the significant increase in KDR expression during the initiation of KIRC could serve as an early diagnostic marker. Moreover, KDR could be utilized to identify advancements in KIRC stages. Additionally, hsa-miR-200c-3p was identified as a potential regulator capable of downregulating and upregulating KDR expression among the 24 miRNAs screened. This find-ing holds promise for future research endeavors. Concurrent administration of the FDA-approved 5-fluor-ouracil with KIRC drugs, such as sorafenib, zidovudine, and everolimus, may have the potential to en-hance the therapeutic efficacy in downregulating hsa-miR-200c-3p. However, further in vitro studies are imperative to validate these findings and gain a comprehensive understanding of the intricate regulatory interplay involving hsa-miR-200c-3p, KDR, 5-fluorouracil, and other FDA-approved drugs for the treat-ment of KIRC. This will facilitate the identification of KIRC stage progression and its underlying pre-ventative mechanisms.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680096321287240826065718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096321287240826065718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

导言:本研究通过广泛的计算分析,深入研究了激酶插入域受体(KDR)及其相关 miRNA 在肾细胞癌中的作用。我们的研究结果对该领域未来的研究具有重要的指导意义。方法:我们的方法包括使用 UALCAN 和 GEPIA2 数据库以及 miRDB、MirDIP、miRNet v2.0、miRTargetLink、MiEAA v2.1、TarBase v8.0、INTERNET 和 miRTarBass,这些方法有助于确定与 KDR 表达相关的 miRNA 的调控。通过使用 CancerMIRNome,预测的 miRNA 与 TCGA-KIRC 患者样本进行了验证。TargetScanHuman v8.0 用于识别人类 miRNA 与 KDR 之间的关联。Patch Dock 服务器分析了 hsa-miR-200b-3p-KDR 和 hsa-miR-200b-3p 与 KDR 之间的相互作用。结果:对肾肾细胞癌(KIRC)样本和邻近正常组织的 KDR 表达率进行了调查,结果显示,KDR 的表达率明显高于正常样本,这在统计学上有很强的显著性(P = 1.63e-12)。据估计,KDR的表达率在肿瘤1级时较高,到转移级时逐渐降低,从而降低了KIRC患者的生存率。为了及早发现这些信号,我们预测了一种能触发 KDR 表达的 miRNA。此外,我们还发现了调控 KDR 的 miR-200c-3p 表达与 KIRC 进展之间的潜在关联。讨论研究结果表明,与正常样本相比,miR-200c-3p 在 KIRC 中明显下调。此外,hsa-miR-200c-3p(R = - 0.276)与 KDR 的表达呈负相关,说明 hsa-miR-200c-3p 的增加可能会降低 KDR 的表达率,从而抑制 KIRC 的发生或发展。结论室内分析表明,在 KIRC 启动过程中,KDR 表达的显著增加可作为早期诊断标志物。此外,KDR 还可用于识别 KIRC 的进展阶段。此外,在筛选出的 24 个 miRNA 中,hsa-miR-200c-3p 被确定为能够下调和上调 KDR 表达的潜在调控因子。这一发现为未来的研究工作带来了希望。在服用索拉非尼、齐多夫定和依维莫司等 KIRC 药物的同时服用美国 FDA 批准的 5-氟-尿嘧啶,可能会增强下调 hsa-miR-200c-3p 的疗效。然而,要验证这些发现,并全面了解涉及 hsa-miR-200c-3p、KDR、5-氟尿嘧啶和其他经 FDA 批准用于治疗 KIRC 的药物的错综复杂的调控相互作用,进一步的体外研究势在必行。这将有助于确定 KIRC 的阶段性进展及其潜在的前期机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening miRNAs to Hinder the Tumorigenesis of Renal Clear Cell Carcinoma Associated with KDR Expression
Introduction: This study delved into the role of Kinase Insert Domain Receptor (KDR) and its associated miRNAs in renal cell carcinoma through an extensive computational analysis. The potential of our findings to guide future research in this area is significant. Methods: Our methods, which included the use of UALCAN and GEPIA2 databases, as well as miRDB, MirDIP, miRNet v2.0, miRTargetLink, MiEAA v2.1, TarBase v8.0, INTERNET, and miRTarBass, were instrumental in identifying the regulation of miRNA associated with KDR expression. The predicted miRNA was validated with the TCGA-KIRC patients’ samples by implementing CancerMIRNome. The TargetScanHuman v8.0 was implemented to identify the associations between human miRNAs and KDR. A Patch Dock server analyzed the interactions between hsa-miR-200b-3p-KDR and hsa-miR-200b-3p with KDR. Results: The KDR expression rate was investigated in the Kidney Renal Cell Carcinoma (KIRC) samples, and adjacent normal tissues revealed that the expression rate was significantly higher than the normal samples, which was evident from the strong statistical significance (P = 1.63e-12). Likely, the KDR ex-pression rate was estimated as high at tumor grade 1 and gradually decreased till the metastasis grade, reducing the survival rate of the KIRC patients. To identify these signals early, we predicted a miRNA that could trigger the expression of KDR. Furthermore, we uncovered the potential associations between miR-200c-3p expressions by regulating KDR towards the progression of KIRC. Discussion: Upon examining the outcome, it became evident that miR-200c-3p was significantly down-regulated in KIRC compared to the normal samples. Moreover, the negative correlation was obtained for hsa-miR-200c-3p (R = - 0.276) along with the KDR expression describing that the increased rate of hsa-miR-200c-3p might reduce the KDR expression rate, which may suppress the KIRC initiation or progres-sion. Conclusion: The in-silico analysis indicated that the significant increase in KDR expression during the initiation of KIRC could serve as an early diagnostic marker. Moreover, KDR could be utilized to identify advancements in KIRC stages. Additionally, hsa-miR-200c-3p was identified as a potential regulator capable of downregulating and upregulating KDR expression among the 24 miRNAs screened. This find-ing holds promise for future research endeavors. Concurrent administration of the FDA-approved 5-fluor-ouracil with KIRC drugs, such as sorafenib, zidovudine, and everolimus, may have the potential to en-hance the therapeutic efficacy in downregulating hsa-miR-200c-3p. However, further in vitro studies are imperative to validate these findings and gain a comprehensive understanding of the intricate regulatory interplay involving hsa-miR-200c-3p, KDR, 5-fluorouracil, and other FDA-approved drugs for the treat-ment of KIRC. This will facilitate the identification of KIRC stage progression and its underlying pre-ventative mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信