{"title":"盐碱土地表可见光光谱特征与水盐传输之间的联系--基于土柱实验室实验的研究","authors":"Shaofeng Qin, Yong Zhang, Jianli Ding, Jinjie Wang, Lijing Han, Shuang Zhao, Chuanmei Zhu","doi":"10.3390/rs16183421","DOIUrl":null,"url":null,"abstract":"Monitoring soil salinity with remote sensing is difficult, but knowing the link between saline soil surface spectra, soil water, and salt transport processes might help in modeling for soil salinity monitoring. In this study, we used an indoor soil column experiment, an unmanned aerial vehicle multispectral sensor camera, and a soil moisture sensor to study the water and salt transport process in the soil column under different water addition conditions and investigate the relationship between the soil water and salt transport process and the spectral reflectance of the image on the soil surface. The observation results of the soil column show that the soil water and salt transportation process conforms to the basic transportation law of “salt moves together with water, and when water evaporates, salt is retained in the soil weight”. The salt accumulation phenomenon increases the image spectral reflectance of the surface layer of the soil column, while soil temperature has no effect on the reflectance. As the water percolates down, water and salt accumulate at the bottom of the soil column. The salinity index decreases instantly after the addition of brine and then tends to increase slowly. The experimental results indicate that this work can capture the relationship between the water and salt transport process and remote sensing spectra, which can provide theoretical basis and reference for soil water salinity monitoring.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"13 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Link between Surface Visible Light Spectral Features and Water–Salt Transfer in Saline Soils—Investigation Based on Soil Column Laboratory Experiments\",\"authors\":\"Shaofeng Qin, Yong Zhang, Jianli Ding, Jinjie Wang, Lijing Han, Shuang Zhao, Chuanmei Zhu\",\"doi\":\"10.3390/rs16183421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring soil salinity with remote sensing is difficult, but knowing the link between saline soil surface spectra, soil water, and salt transport processes might help in modeling for soil salinity monitoring. In this study, we used an indoor soil column experiment, an unmanned aerial vehicle multispectral sensor camera, and a soil moisture sensor to study the water and salt transport process in the soil column under different water addition conditions and investigate the relationship between the soil water and salt transport process and the spectral reflectance of the image on the soil surface. The observation results of the soil column show that the soil water and salt transportation process conforms to the basic transportation law of “salt moves together with water, and when water evaporates, salt is retained in the soil weight”. The salt accumulation phenomenon increases the image spectral reflectance of the surface layer of the soil column, while soil temperature has no effect on the reflectance. As the water percolates down, water and salt accumulate at the bottom of the soil column. The salinity index decreases instantly after the addition of brine and then tends to increase slowly. The experimental results indicate that this work can capture the relationship between the water and salt transport process and remote sensing spectra, which can provide theoretical basis and reference for soil water salinity monitoring.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183421\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183421","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Link between Surface Visible Light Spectral Features and Water–Salt Transfer in Saline Soils—Investigation Based on Soil Column Laboratory Experiments
Monitoring soil salinity with remote sensing is difficult, but knowing the link between saline soil surface spectra, soil water, and salt transport processes might help in modeling for soil salinity monitoring. In this study, we used an indoor soil column experiment, an unmanned aerial vehicle multispectral sensor camera, and a soil moisture sensor to study the water and salt transport process in the soil column under different water addition conditions and investigate the relationship between the soil water and salt transport process and the spectral reflectance of the image on the soil surface. The observation results of the soil column show that the soil water and salt transportation process conforms to the basic transportation law of “salt moves together with water, and when water evaporates, salt is retained in the soil weight”. The salt accumulation phenomenon increases the image spectral reflectance of the surface layer of the soil column, while soil temperature has no effect on the reflectance. As the water percolates down, water and salt accumulate at the bottom of the soil column. The salinity index decreases instantly after the addition of brine and then tends to increase slowly. The experimental results indicate that this work can capture the relationship between the water and salt transport process and remote sensing spectra, which can provide theoretical basis and reference for soil water salinity monitoring.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.