基于 SLAM 的点云表面重构:来自 2023 SIFET 基准数据集的结果

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Remote Sensing Pub Date : 2024-09-16 DOI:10.3390/rs16183439
Antonio Matellon, Eleonora Maset, Alberto Beinat, Domenico Visintini
{"title":"基于 SLAM 的点云表面重构:来自 2023 SIFET 基准数据集的结果","authors":"Antonio Matellon, Eleonora Maset, Alberto Beinat, Domenico Visintini","doi":"10.3390/rs16183439","DOIUrl":null,"url":null,"abstract":"The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"23 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Reconstruction from SLAM-Based Point Clouds: Results from the Datasets of the 2023 SIFET Benchmark\",\"authors\":\"Antonio Matellon, Eleonora Maset, Alberto Beinat, Domenico Visintini\",\"doi\":\"10.3390/rs16183439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183439\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183439","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,地理信息学技术发展迅速,基于同步定位与绘图(SLAM)技术的便携式激光扫描仪系统在某些应用中逐渐取代了传统技术,从而提高了三维测量的便捷性、生产率和可靠性。虽然文献中已对此类系统在点云精度和噪声水平方面的性能进行了深入研究,但对其在表面重建、制图和竣工建筑信息模型(BIM)创建方面的应用进行评估的著作较少。本研究的目的是评估 SLAM 设备在城市/建筑环境中进行表面建模的适用性。为此,在意大利摄影测量和地形协会(SIFET)于 2023 年组织的基准测试中,对三台商用便携式激光扫描仪获取的数据集进行了分析。除了传统的点云评估外,我们还采用模型对模型的方法,对重建网格和地面实况模型进行了比较。结果很不错,模型之间的平均距离在 0.2 到 1.4 厘米之间。然而,根据地面激光扫描点云建模的表面显示出的细节水平仍然是 SLAM 系统无法比拟的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface Reconstruction from SLAM-Based Point Clouds: Results from the Datasets of the 2023 SIFET Benchmark
The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信