{"title":"青藏高原生态系统质量及其对干旱的响应评估","authors":"Yimeng Yan, Jiaxi Cao, Yufan Gu, Xuening Huang, Xiaoxian Liu, Yue Hu, Shuhong Wu","doi":"10.3390/rs16183461","DOIUrl":null,"url":null,"abstract":"Exploring the response of spatial and temporal characteristics of ecological quality change to aridity on the Qinghai–Tibet Plateau (QTP) can provide valuable information for regional ecological protection, water resource management, and climate change adaptation. In this study, we constructed the Remote Sensing Ecological Index (RSEI) and Standardized Precipitation Evapotranspiration Index (SPEI) based on the Google Earth Engine (GEE) platform with regional characteristics and completely analyzed the spatial and temporal variations of aridity and ecological quality on the QTP in the years 2000, 2005, 2010, 2015, and 2020. Additionally, we explored the responses of ecological quality to aridity indices at six different time scales. The Mann–Kendall test, correlation analysis, and significance test were used to study the spatial and temporal distribution characteristics of meteorological aridity at different time scales on the QTP and their impacts on the quality of the ecological environment. The results show that the ecological environmental quality of the QTP has a clear spatial distribution pattern. The ecological environment quality is significantly better in the south-east, while the Qaidam Basin and the west have lower ecological environment quality indices, but the overall trend of environmental quality is getting better. The Aridity Index of the QTP shows a differentiated spatial and temporal distribution pattern, with higher Aridity Indexes in the north-eastern and south-western parts of the plateau and lower Aridity Indexes in the central part of the plateau at shorter time scales. Monthly, seasonal, and annual-scale SPEI values showed an increasing trend. There is a correlation between aridity conditions and ecological quality on the QTP. The areas with significant positive correlation between the RSEI and SPEI in the study area were mainly concentrated in the south-eastern, south-western, and northern parts of the QTP, where the ecological quality of the environment is more seriously affected by meteorological aridity.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"48 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluation of Ecosystem Quality and Its Response to Aridity on the Qinghai–Tibet Plateau\",\"authors\":\"Yimeng Yan, Jiaxi Cao, Yufan Gu, Xuening Huang, Xiaoxian Liu, Yue Hu, Shuhong Wu\",\"doi\":\"10.3390/rs16183461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring the response of spatial and temporal characteristics of ecological quality change to aridity on the Qinghai–Tibet Plateau (QTP) can provide valuable information for regional ecological protection, water resource management, and climate change adaptation. In this study, we constructed the Remote Sensing Ecological Index (RSEI) and Standardized Precipitation Evapotranspiration Index (SPEI) based on the Google Earth Engine (GEE) platform with regional characteristics and completely analyzed the spatial and temporal variations of aridity and ecological quality on the QTP in the years 2000, 2005, 2010, 2015, and 2020. Additionally, we explored the responses of ecological quality to aridity indices at six different time scales. The Mann–Kendall test, correlation analysis, and significance test were used to study the spatial and temporal distribution characteristics of meteorological aridity at different time scales on the QTP and their impacts on the quality of the ecological environment. The results show that the ecological environmental quality of the QTP has a clear spatial distribution pattern. The ecological environment quality is significantly better in the south-east, while the Qaidam Basin and the west have lower ecological environment quality indices, but the overall trend of environmental quality is getting better. The Aridity Index of the QTP shows a differentiated spatial and temporal distribution pattern, with higher Aridity Indexes in the north-eastern and south-western parts of the plateau and lower Aridity Indexes in the central part of the plateau at shorter time scales. Monthly, seasonal, and annual-scale SPEI values showed an increasing trend. There is a correlation between aridity conditions and ecological quality on the QTP. The areas with significant positive correlation between the RSEI and SPEI in the study area were mainly concentrated in the south-eastern, south-western, and northern parts of the QTP, where the ecological quality of the environment is more seriously affected by meteorological aridity.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183461\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183461","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An Evaluation of Ecosystem Quality and Its Response to Aridity on the Qinghai–Tibet Plateau
Exploring the response of spatial and temporal characteristics of ecological quality change to aridity on the Qinghai–Tibet Plateau (QTP) can provide valuable information for regional ecological protection, water resource management, and climate change adaptation. In this study, we constructed the Remote Sensing Ecological Index (RSEI) and Standardized Precipitation Evapotranspiration Index (SPEI) based on the Google Earth Engine (GEE) platform with regional characteristics and completely analyzed the spatial and temporal variations of aridity and ecological quality on the QTP in the years 2000, 2005, 2010, 2015, and 2020. Additionally, we explored the responses of ecological quality to aridity indices at six different time scales. The Mann–Kendall test, correlation analysis, and significance test were used to study the spatial and temporal distribution characteristics of meteorological aridity at different time scales on the QTP and their impacts on the quality of the ecological environment. The results show that the ecological environmental quality of the QTP has a clear spatial distribution pattern. The ecological environment quality is significantly better in the south-east, while the Qaidam Basin and the west have lower ecological environment quality indices, but the overall trend of environmental quality is getting better. The Aridity Index of the QTP shows a differentiated spatial and temporal distribution pattern, with higher Aridity Indexes in the north-eastern and south-western parts of the plateau and lower Aridity Indexes in the central part of the plateau at shorter time scales. Monthly, seasonal, and annual-scale SPEI values showed an increasing trend. There is a correlation between aridity conditions and ecological quality on the QTP. The areas with significant positive correlation between the RSEI and SPEI in the study area were mainly concentrated in the south-eastern, south-western, and northern parts of the QTP, where the ecological quality of the environment is more seriously affected by meteorological aridity.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.