Fatemeh Malekipour, R. Chris Whitton, Peter Vee-Sin Lee
{"title":"软骨下骨生物力学的进展:马模型计算机断层扫描和显微计算机断层扫描成像的启示","authors":"Fatemeh Malekipour, R. Chris Whitton, Peter Vee-Sin Lee","doi":"10.1007/s11914-024-00886-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>This review synthesizes recent advancements in understanding subchondral bone (SCB) biomechanics using computed tomography (CT) and micro-computed tomography (micro-CT) imaging in large animal models, particularly horses.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>Recent studies highlight the complexity of SCB biomechanics, revealing variability in density, microstructure, and biomechanical properties across the depth of SCB from the joint surface, as well as at different joint locations. Early SCB abnormalities have been identified as predictive markers for both osteoarthritis (OA) and stress fractures. The development of standing CT systems has improved the practicality and accuracy of live animal imaging, aiding early diagnosis of SCB pathologies.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>While imaging advancements have enhanced our understanding of SCB, further research is required to elucidate the underlying mechanisms of joint disease and articular surface failure. Combining imaging with mechanical testing, computational modelling, and artificial intelligence (AI) promises earlier detection and better management of joint disease. Future research should refine these modalities and integrate them into clinical practice to enhance joint health outcomes in veterinary and human medicine.</p>","PeriodicalId":11080,"journal":{"name":"Current Osteoporosis Reports","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in Subchondral Bone Biomechanics: Insights from Computed Tomography and Micro-Computed Tomography Imaging in Equine Models\",\"authors\":\"Fatemeh Malekipour, R. Chris Whitton, Peter Vee-Sin Lee\",\"doi\":\"10.1007/s11914-024-00886-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose of Review</h3><p>This review synthesizes recent advancements in understanding subchondral bone (SCB) biomechanics using computed tomography (CT) and micro-computed tomography (micro-CT) imaging in large animal models, particularly horses.</p><h3 data-test=\\\"abstract-sub-heading\\\">Recent Findings</h3><p>Recent studies highlight the complexity of SCB biomechanics, revealing variability in density, microstructure, and biomechanical properties across the depth of SCB from the joint surface, as well as at different joint locations. Early SCB abnormalities have been identified as predictive markers for both osteoarthritis (OA) and stress fractures. The development of standing CT systems has improved the practicality and accuracy of live animal imaging, aiding early diagnosis of SCB pathologies.</p><h3 data-test=\\\"abstract-sub-heading\\\">Summary</h3><p>While imaging advancements have enhanced our understanding of SCB, further research is required to elucidate the underlying mechanisms of joint disease and articular surface failure. Combining imaging with mechanical testing, computational modelling, and artificial intelligence (AI) promises earlier detection and better management of joint disease. Future research should refine these modalities and integrate them into clinical practice to enhance joint health outcomes in veterinary and human medicine.</p>\",\"PeriodicalId\":11080,\"journal\":{\"name\":\"Current Osteoporosis Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Osteoporosis Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11914-024-00886-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Osteoporosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11914-024-00886-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Advancements in Subchondral Bone Biomechanics: Insights from Computed Tomography and Micro-Computed Tomography Imaging in Equine Models
Purpose of Review
This review synthesizes recent advancements in understanding subchondral bone (SCB) biomechanics using computed tomography (CT) and micro-computed tomography (micro-CT) imaging in large animal models, particularly horses.
Recent Findings
Recent studies highlight the complexity of SCB biomechanics, revealing variability in density, microstructure, and biomechanical properties across the depth of SCB from the joint surface, as well as at different joint locations. Early SCB abnormalities have been identified as predictive markers for both osteoarthritis (OA) and stress fractures. The development of standing CT systems has improved the practicality and accuracy of live animal imaging, aiding early diagnosis of SCB pathologies.
Summary
While imaging advancements have enhanced our understanding of SCB, further research is required to elucidate the underlying mechanisms of joint disease and articular surface failure. Combining imaging with mechanical testing, computational modelling, and artificial intelligence (AI) promises earlier detection and better management of joint disease. Future research should refine these modalities and integrate them into clinical practice to enhance joint health outcomes in veterinary and human medicine.
期刊介绍:
This journal intends to provide clear, insightful, balanced contributions by international experts that review the most important, recently published clinical findings related to the diagnosis, treatment, management, and prevention of osteoporosis.
We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas, such as current and future therapeutics, epidemiology and pathophysiology, and evaluation and management. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also provided.