Pei Wang, Jiatong Fan, Yimin Lei, Tong Hou, Yue Dong, Yang Li, Zhitai Jia, Xutang Tao, Wenxiang Mu
{"title":"β-Ga2O3晶体中的弯形双边界","authors":"Pei Wang, Jiatong Fan, Yimin Lei, Tong Hou, Yue Dong, Yang Li, Zhitai Jia, Xutang Tao, Wenxiang Mu","doi":"10.1021/acs.cgd.4c00875","DOIUrl":null,"url":null,"abstract":"Twin boundary (TB) as a two-dimensional defect will constrain the size of the crystal material, reduce the yield of single crystals, and affect the performance of subsequent devices. For β-Ga<sub>2</sub>O<sub>3</sub>, it is one of the most promising ultrawide-band-gap semiconductor materials, which is severely limited by the twinning problem. In this paper, the unpenetrated twin structure with bent-shaped TB in the β-Ga<sub>2</sub>O<sub>3</sub> bulk crystal was found and discussed in detail. The orientation difference and microstructure on the atomic scale of the bent-shaped TB in β-Ga<sub>2</sub>O<sub>3</sub> have been intensively investigated from the (010) and (100) orientations using electron backscatter diffraction (EBSD) and spherical aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging techniques. The results indicate that the bent-shaped TB is 180° TB, formed by the combination of incoherent TB (ITB) and (100)-coherent TB (CTB). The ITB can be further represented as a combination of (1̅02)-CTB and (100)-CTB. The formation mechanism of the bent-shaped TB in β-Ga<sub>2</sub>O<sub>3</sub> is elucidated based on the TB formation energy (<i>E</i><sub>TB</sub>) and crystal growth kinetics. This study reveals the microstructure and formation mechanism of bent-shaped TB and enriches the work on crystal defects in β-Ga<sub>2</sub>O<sub>3</sub>.","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"65 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bent-Shaped Twin Boundary in β-Ga2O3 Crystals\",\"authors\":\"Pei Wang, Jiatong Fan, Yimin Lei, Tong Hou, Yue Dong, Yang Li, Zhitai Jia, Xutang Tao, Wenxiang Mu\",\"doi\":\"10.1021/acs.cgd.4c00875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twin boundary (TB) as a two-dimensional defect will constrain the size of the crystal material, reduce the yield of single crystals, and affect the performance of subsequent devices. For β-Ga<sub>2</sub>O<sub>3</sub>, it is one of the most promising ultrawide-band-gap semiconductor materials, which is severely limited by the twinning problem. In this paper, the unpenetrated twin structure with bent-shaped TB in the β-Ga<sub>2</sub>O<sub>3</sub> bulk crystal was found and discussed in detail. The orientation difference and microstructure on the atomic scale of the bent-shaped TB in β-Ga<sub>2</sub>O<sub>3</sub> have been intensively investigated from the (010) and (100) orientations using electron backscatter diffraction (EBSD) and spherical aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging techniques. The results indicate that the bent-shaped TB is 180° TB, formed by the combination of incoherent TB (ITB) and (100)-coherent TB (CTB). The ITB can be further represented as a combination of (1̅02)-CTB and (100)-CTB. The formation mechanism of the bent-shaped TB in β-Ga<sub>2</sub>O<sub>3</sub> is elucidated based on the TB formation energy (<i>E</i><sub>TB</sub>) and crystal growth kinetics. This study reveals the microstructure and formation mechanism of bent-shaped TB and enriches the work on crystal defects in β-Ga<sub>2</sub>O<sub>3</sub>.\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.cgd.4c00875\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.4c00875","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Twin boundary (TB) as a two-dimensional defect will constrain the size of the crystal material, reduce the yield of single crystals, and affect the performance of subsequent devices. For β-Ga2O3, it is one of the most promising ultrawide-band-gap semiconductor materials, which is severely limited by the twinning problem. In this paper, the unpenetrated twin structure with bent-shaped TB in the β-Ga2O3 bulk crystal was found and discussed in detail. The orientation difference and microstructure on the atomic scale of the bent-shaped TB in β-Ga2O3 have been intensively investigated from the (010) and (100) orientations using electron backscatter diffraction (EBSD) and spherical aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging techniques. The results indicate that the bent-shaped TB is 180° TB, formed by the combination of incoherent TB (ITB) and (100)-coherent TB (CTB). The ITB can be further represented as a combination of (1̅02)-CTB and (100)-CTB. The formation mechanism of the bent-shaped TB in β-Ga2O3 is elucidated based on the TB formation energy (ETB) and crystal growth kinetics. This study reveals the microstructure and formation mechanism of bent-shaped TB and enriches the work on crystal defects in β-Ga2O3.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.