由加塞德单体产生的奇数和偶数斐波那契网格

IF 0.6 4区 数学 Q3 MATHEMATICS
Thomas Gobet, Baptiste Rognerud
{"title":"由加塞德单体产生的奇数和偶数斐波那契网格","authors":"Thomas Gobet,&nbsp;Baptiste Rognerud","doi":"10.1007/s00012-024-00867-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study two families of lattices whose number of elements are given by the numbers in even (respectively odd) positions in the Fibonacci sequence. The even Fibonacci lattice arises as the lattice of simple elements of a Garside monoid partially ordered by left-divisibility, and the odd Fibonacci lattice is an order ideal in the even one. We give a combinatorial proof of the lattice property, relying on a description of words for the Garside element in terms of Schröder trees, and on a recursive description of the even Fibonacci lattice. This yields an explicit formula to calculate meets and joins in the lattice. As a byproduct we also obtain that the number of words for the Garside element is given by a little Schröder number.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Odd and even Fibonacci lattices arising from a Garside monoid\",\"authors\":\"Thomas Gobet,&nbsp;Baptiste Rognerud\",\"doi\":\"10.1007/s00012-024-00867-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study two families of lattices whose number of elements are given by the numbers in even (respectively odd) positions in the Fibonacci sequence. The even Fibonacci lattice arises as the lattice of simple elements of a Garside monoid partially ordered by left-divisibility, and the odd Fibonacci lattice is an order ideal in the even one. We give a combinatorial proof of the lattice property, relying on a description of words for the Garside element in terms of Schröder trees, and on a recursive description of the even Fibonacci lattice. This yields an explicit formula to calculate meets and joins in the lattice. As a byproduct we also obtain that the number of words for the Garside element is given by a little Schröder number.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00867-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00867-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了两个网格族,它们的元素数是由斐波那契数列中偶数(分别是奇数)位置上的数字给出的。偶数斐波那契网格是加西德一元组的简单元素网格,部分由左可分性排序,而奇数斐波那契网格是偶数斐波那契网格中的一个有序理想。我们依赖于用 Schröder 树描述的 Garside 元素的单词,以及对偶数斐波那契网格的递归描述,给出了网格性质的组合证明。这就得到了计算网格中相遇和连接的明确公式。作为副产品,我们还得到了加西德元素的字数是由一个小施罗德数给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Odd and even Fibonacci lattices arising from a Garside monoid

Odd and even Fibonacci lattices arising from a Garside monoid

Odd and even Fibonacci lattices arising from a Garside monoid

We study two families of lattices whose number of elements are given by the numbers in even (respectively odd) positions in the Fibonacci sequence. The even Fibonacci lattice arises as the lattice of simple elements of a Garside monoid partially ordered by left-divisibility, and the odd Fibonacci lattice is an order ideal in the even one. We give a combinatorial proof of the lattice property, relying on a description of words for the Garside element in terms of Schröder trees, and on a recursive description of the even Fibonacci lattice. This yields an explicit formula to calculate meets and joins in the lattice. As a byproduct we also obtain that the number of words for the Garside element is given by a little Schröder number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信