{"title":"带有加权非局部源和梯度吸收项的准线性椭圆微分不等式的利乌维尔类型定理","authors":"Ye Du, Zhong Bo Fang","doi":"10.1007/s00526-024-02821-6","DOIUrl":null,"url":null,"abstract":"<p>This work is concerned with the nonexistence of nontrivial nonnegative weak solutions for a strongly <i>p</i>-coercive elliptic differential inequality with weighted nonlocal source and gradient absorption terms in the whole space. Under the condition that the positive weight in the absorption term is either a sufficiently small constant or more general, we establish new Liouville type results containing the critical case. The key ingredient in the proof is the rescaled test function method developed by Mitidieri and Pohozaev.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville type theorems for a quasilinear elliptic differential inequality with weighted nonlocal source and gradient absorption terms\",\"authors\":\"Ye Du, Zhong Bo Fang\",\"doi\":\"10.1007/s00526-024-02821-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work is concerned with the nonexistence of nontrivial nonnegative weak solutions for a strongly <i>p</i>-coercive elliptic differential inequality with weighted nonlocal source and gradient absorption terms in the whole space. Under the condition that the positive weight in the absorption term is either a sufficiently small constant or more general, we establish new Liouville type results containing the critical case. The key ingredient in the proof is the rescaled test function method developed by Mitidieri and Pohozaev.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02821-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02821-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本研究关注的是在整个空间中具有加权非局部源和梯度吸收项的强 p 胁迫椭圆微分不等式的非微不足道的非负弱解的不存在性。在吸收项中的正权重为足够小的常数或更一般的条件下,我们建立了包含临界情况的新的柳维尔类型结果。证明的关键要素是米蒂迪埃里和波霍扎耶夫开发的重标检验函数方法。
Liouville type theorems for a quasilinear elliptic differential inequality with weighted nonlocal source and gradient absorption terms
This work is concerned with the nonexistence of nontrivial nonnegative weak solutions for a strongly p-coercive elliptic differential inequality with weighted nonlocal source and gradient absorption terms in the whole space. Under the condition that the positive weight in the absorption term is either a sufficiently small constant or more general, we establish new Liouville type results containing the critical case. The key ingredient in the proof is the rescaled test function method developed by Mitidieri and Pohozaev.