关于$$-1<0$$的$$L^{p}$$对偶闵科夫斯基问题

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Stephanie Mui
{"title":"关于$$-1<0$$的$$L^{p}$$对偶闵科夫斯基问题","authors":"Stephanie Mui","doi":"10.1007/s00526-024-02806-5","DOIUrl":null,"url":null,"abstract":"<p>The <span>\\(L^{p}\\)</span> dual curvature measure was introduced by Lutwak et al. (Adv Math 329:85–132, 2018). The associated Minkowski problem, known as the <span>\\(L^{p}\\)</span> dual Minkowski problem, asks about existence of a convex body with prescribed <span>\\(L^{p}\\)</span> dual curvature measure. This question unifies the previously disjoint <span>\\(L^{p}\\)</span> Minkowski problem with the dual Minkowski problem, two open questions in convex geometry. In this paper, we prove the existence of a solution to the <span>\\(L^{p}\\)</span> dual Minkowski problem for the case of <span>\\(q&lt;p+1\\)</span>, <span>\\(-1&lt;p&lt;0\\)</span>, and <span>\\(p\\ne q\\)</span> for even measures.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the $$L^{p}$$ dual Minkowski problem for $$-1<0$$\",\"authors\":\"Stephanie Mui\",\"doi\":\"10.1007/s00526-024-02806-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span>\\\\(L^{p}\\\\)</span> dual curvature measure was introduced by Lutwak et al. (Adv Math 329:85–132, 2018). The associated Minkowski problem, known as the <span>\\\\(L^{p}\\\\)</span> dual Minkowski problem, asks about existence of a convex body with prescribed <span>\\\\(L^{p}\\\\)</span> dual curvature measure. This question unifies the previously disjoint <span>\\\\(L^{p}\\\\)</span> Minkowski problem with the dual Minkowski problem, two open questions in convex geometry. In this paper, we prove the existence of a solution to the <span>\\\\(L^{p}\\\\)</span> dual Minkowski problem for the case of <span>\\\\(q&lt;p+1\\\\)</span>, <span>\\\\(-1&lt;p&lt;0\\\\)</span>, and <span>\\\\(p\\\\ne q\\\\)</span> for even measures.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02806-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02806-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

Lutwak 等人提出了 \(L^{p}\) 对偶曲率量(Adv Math 329:85-132, 2018)。相关的闵科夫斯基问题被称为\(L^{p}\) 对偶闵科夫斯基问题,询问是否存在具有规定的\(L^{p}\) 对偶曲率度量的凸体。这个问题统一了之前不相交的 \(L^{p}\) Minkowski 问题和对偶 Minkowski 问题,这是凸几何中的两个悬而未决的问题。在本文中,我们证明了在\(q<p+1\)、\(-1<p<0\)和\(p\ne q\) 偶数度量的情况下,\(L^{p}\)对偶 Minkowski 问题解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the $$L^{p}$$ dual Minkowski problem for $$-1<0$$

The \(L^{p}\) dual curvature measure was introduced by Lutwak et al. (Adv Math 329:85–132, 2018). The associated Minkowski problem, known as the \(L^{p}\) dual Minkowski problem, asks about existence of a convex body with prescribed \(L^{p}\) dual curvature measure. This question unifies the previously disjoint \(L^{p}\) Minkowski problem with the dual Minkowski problem, two open questions in convex geometry. In this paper, we prove the existence of a solution to the \(L^{p}\) dual Minkowski problem for the case of \(q<p+1\), \(-1<p<0\), and \(p\ne q\) for even measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信