可遗传分解连续体具有非块点

IF 0.6 4区 数学 Q3 MATHEMATICS
Daron Anderson
{"title":"可遗传分解连续体具有非块点","authors":"Daron Anderson","doi":"10.1016/j.topol.2024.109072","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we expand upon our results from <span><span>[1]</span></span> to show that every nondegenerate hereditarily decomposable Hausdorff continuum has two or more non-block points, i.e. points whose complements contain a continuum-connected dense subset. The celebrated non-cut point existence theorem states that all nondegenerate Hausdorff continua have two or more non-cut points, and the corresponding result for non-block points is known to hold for metrizable continua. It is also known that there are consistent examples of Hausdorff continua with no non-block points, but that non-block point existence holds for Hausdorff continua that are either aposyndetic, irreducible, or separable.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"357 ","pages":"Article 109072"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hereditarily decomposable continua have non-block points\",\"authors\":\"Daron Anderson\",\"doi\":\"10.1016/j.topol.2024.109072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note we expand upon our results from <span><span>[1]</span></span> to show that every nondegenerate hereditarily decomposable Hausdorff continuum has two or more non-block points, i.e. points whose complements contain a continuum-connected dense subset. The celebrated non-cut point existence theorem states that all nondegenerate Hausdorff continua have two or more non-cut points, and the corresponding result for non-block points is known to hold for metrizable continua. It is also known that there are consistent examples of Hausdorff continua with no non-block points, but that non-block point existence holds for Hausdorff continua that are either aposyndetic, irreducible, or separable.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"357 \",\"pages\":\"Article 109072\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124002578\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002578","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本注释中,我们扩展了[1]中的结果,证明每个非enerate 遗传可分解豪斯多夫连续体都有两个或两个以上的非块点,即其补集包含连续体连接密集子集的点。著名的非切点存在定理指出,所有非enerate Hausdorff 连续体都有两个或两个以上的非切点。人们还知道,有一些豪斯多夫连续体的一致例子不存在非块点,但非块点的存在对于无块、不可还原或可分离的豪斯多夫连续体是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hereditarily decomposable continua have non-block points
In this note we expand upon our results from [1] to show that every nondegenerate hereditarily decomposable Hausdorff continuum has two or more non-block points, i.e. points whose complements contain a continuum-connected dense subset. The celebrated non-cut point existence theorem states that all nondegenerate Hausdorff continua have two or more non-cut points, and the corresponding result for non-block points is known to hold for metrizable continua. It is also known that there are consistent examples of Hausdorff continua with no non-block points, but that non-block point existence holds for Hausdorff continua that are either aposyndetic, irreducible, or separable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信