Da-Long He, Xiao-Yu Zhang, Jing-Yang Su, Qi Zhang, Ling-Xiao Zhao, Ting-Yao Wu, Hang Ren, Rong-Jun Jia, Xian-Fang Lei, Wen-Jia Hou, Wen-Ge Sun, Yong-Gang Fan, Zhan-You Wang
{"title":"通过加速 GSK3α/β 外渗,鉴定 AS1842856 为一种新型小分子 GSK3α/β 抑制剂,可防治 Tauopathy","authors":"Da-Long He, Xiao-Yu Zhang, Jing-Yang Su, Qi Zhang, Ling-Xiao Zhao, Ting-Yao Wu, Hang Ren, Rong-Jun Jia, Xian-Fang Lei, Wen-Jia Hou, Wen-Ge Sun, Yong-Gang Fan, Zhan-You Wang","doi":"10.1111/acel.14336","DOIUrl":null,"url":null,"abstract":"<p>Glycogen synthase kinase-3α/β (GSK3α/β) is a critical kinase for Tau hyperphosphorylation which contributes to neurodegeneration. Despite the termination of clinical trials for GSK3α/β inhibitors in Alzheimer's disease (AD) treatment, there is a pressing need for novel therapeutic strategies targeting GSK3α/β. Here, we identified the compound AS1842856 (AS), a specific forkhead box protein O1 (FOXO1) inhibitor, reduced intracellular GSK3α/β content in a FOXO1-independent manner. Specifically, AS directly bound to GSK3α/β, promoting its translocation to the multivesicular bodies (MVBs) and accelerating exocytosis, ultimately decreasing intracellular GSK3α/β content. Expectedly, AS treatment effectively suppressed Tau hyperphosphorylation in cells exposed to okadaic acid or expressing the Tau<sup>P301S</sup> mutant. Furthermore, AS was visualized to penetrate the blood–brain barrier (BBB) using an imaging mass microscope. Long-term treatment of AS enhanced cognitive function in P301S transgenic mice by mitigating Tau hyperphosphorylation through downregulation of GSK3α/β expression in the brain. Altogether, AS represents a novel small-molecule GSK3α/β inhibitor that facilitates GSK3α/β exocytosis, holding promise as a therapeutic agent for GSK3α/β hyperactivation-associated disorders.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14336","citationCount":"0","resultStr":"{\"title\":\"Identification of AS1842856 as a novel small-molecule GSK3α/β inhibitor against Tauopathy by accelerating GSK3α/β exocytosis\",\"authors\":\"Da-Long He, Xiao-Yu Zhang, Jing-Yang Su, Qi Zhang, Ling-Xiao Zhao, Ting-Yao Wu, Hang Ren, Rong-Jun Jia, Xian-Fang Lei, Wen-Jia Hou, Wen-Ge Sun, Yong-Gang Fan, Zhan-You Wang\",\"doi\":\"10.1111/acel.14336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glycogen synthase kinase-3α/β (GSK3α/β) is a critical kinase for Tau hyperphosphorylation which contributes to neurodegeneration. Despite the termination of clinical trials for GSK3α/β inhibitors in Alzheimer's disease (AD) treatment, there is a pressing need for novel therapeutic strategies targeting GSK3α/β. Here, we identified the compound AS1842856 (AS), a specific forkhead box protein O1 (FOXO1) inhibitor, reduced intracellular GSK3α/β content in a FOXO1-independent manner. Specifically, AS directly bound to GSK3α/β, promoting its translocation to the multivesicular bodies (MVBs) and accelerating exocytosis, ultimately decreasing intracellular GSK3α/β content. Expectedly, AS treatment effectively suppressed Tau hyperphosphorylation in cells exposed to okadaic acid or expressing the Tau<sup>P301S</sup> mutant. Furthermore, AS was visualized to penetrate the blood–brain barrier (BBB) using an imaging mass microscope. Long-term treatment of AS enhanced cognitive function in P301S transgenic mice by mitigating Tau hyperphosphorylation through downregulation of GSK3α/β expression in the brain. Altogether, AS represents a novel small-molecule GSK3α/β inhibitor that facilitates GSK3α/β exocytosis, holding promise as a therapeutic agent for GSK3α/β hyperactivation-associated disorders.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14336\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14336\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14336","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Identification of AS1842856 as a novel small-molecule GSK3α/β inhibitor against Tauopathy by accelerating GSK3α/β exocytosis
Glycogen synthase kinase-3α/β (GSK3α/β) is a critical kinase for Tau hyperphosphorylation which contributes to neurodegeneration. Despite the termination of clinical trials for GSK3α/β inhibitors in Alzheimer's disease (AD) treatment, there is a pressing need for novel therapeutic strategies targeting GSK3α/β. Here, we identified the compound AS1842856 (AS), a specific forkhead box protein O1 (FOXO1) inhibitor, reduced intracellular GSK3α/β content in a FOXO1-independent manner. Specifically, AS directly bound to GSK3α/β, promoting its translocation to the multivesicular bodies (MVBs) and accelerating exocytosis, ultimately decreasing intracellular GSK3α/β content. Expectedly, AS treatment effectively suppressed Tau hyperphosphorylation in cells exposed to okadaic acid or expressing the TauP301S mutant. Furthermore, AS was visualized to penetrate the blood–brain barrier (BBB) using an imaging mass microscope. Long-term treatment of AS enhanced cognitive function in P301S transgenic mice by mitigating Tau hyperphosphorylation through downregulation of GSK3α/β expression in the brain. Altogether, AS represents a novel small-molecule GSK3α/β inhibitor that facilitates GSK3α/β exocytosis, holding promise as a therapeutic agent for GSK3α/β hyperactivation-associated disorders.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.