Benjamin D. McNair, Aykhan Yusifov, Joshua P. Thornburg, Caleb R. Hoopes, Sushumna B. Satyanarayana, Tathagato Roy, Jason P. Gigley, Danielle R. Bruns
{"title":"左右心室衰老的分子和生理机制各不相同","authors":"Benjamin D. McNair, Aykhan Yusifov, Joshua P. Thornburg, Caleb R. Hoopes, Sushumna B. Satyanarayana, Tathagato Roy, Jason P. Gigley, Danielle R. Bruns","doi":"10.1111/acel.14339","DOIUrl":null,"url":null,"abstract":"Aging is the primary risk factor for heart disease, the leading global cause of death. Right ventricular (RV) function predicts survival in several age-related clinical contexts, yet no therapies directly improve RV function, in large part due to a poor mechanistic understanding of RV aging and how it is distinct from the widely studied left ventricle (LV). To address this gap, we comprehensively quantified RV functional and morphological remodeling with age. We further aimed to identify molecular mechanisms of RV aging thus we performed RNAseq on RV and LV from male and female young (4 months) and aged (19–21 months) C57BL6 mice. Contrary to the concentric hypertrophic remodeling and diastolic dysfunction that occurs in the LV, the aging RV underwent eccentric remodeling with significant dilation and impaired systolic function. Transcriptomic data were also consistent with ventricle-specific aging, with few genes (13%) similarly shared between ventricles with aging. KEGG analysis identified shared aging genes in inflammatory and immune cell pathways that were confirmed by flow cytometry that demonstrated higher percent of GR1+ myeloid cells in both ventricles. Unique RV aging genes enriched in the biosynthesis of saturated fatty acids, PPAR signaling, and butanoate metabolism, and we identified putative novel RV-specific aging genes. Together, we suggest that the RV and LV are unique cardiac chambers that undergo distinct remodeling with age. These robust differences may explain why therapies designed from LV-based studies fail to improve RV function and suggest that future efforts emphasizing ventricular differences may elucidate new therapies for healthy cardiac aging.","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"1 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular and physiological mechanisms of aging are distinct in the cardiac right and left ventricles\",\"authors\":\"Benjamin D. McNair, Aykhan Yusifov, Joshua P. Thornburg, Caleb R. Hoopes, Sushumna B. Satyanarayana, Tathagato Roy, Jason P. Gigley, Danielle R. Bruns\",\"doi\":\"10.1111/acel.14339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aging is the primary risk factor for heart disease, the leading global cause of death. Right ventricular (RV) function predicts survival in several age-related clinical contexts, yet no therapies directly improve RV function, in large part due to a poor mechanistic understanding of RV aging and how it is distinct from the widely studied left ventricle (LV). To address this gap, we comprehensively quantified RV functional and morphological remodeling with age. We further aimed to identify molecular mechanisms of RV aging thus we performed RNAseq on RV and LV from male and female young (4 months) and aged (19–21 months) C57BL6 mice. Contrary to the concentric hypertrophic remodeling and diastolic dysfunction that occurs in the LV, the aging RV underwent eccentric remodeling with significant dilation and impaired systolic function. Transcriptomic data were also consistent with ventricle-specific aging, with few genes (13%) similarly shared between ventricles with aging. KEGG analysis identified shared aging genes in inflammatory and immune cell pathways that were confirmed by flow cytometry that demonstrated higher percent of GR1+ myeloid cells in both ventricles. Unique RV aging genes enriched in the biosynthesis of saturated fatty acids, PPAR signaling, and butanoate metabolism, and we identified putative novel RV-specific aging genes. Together, we suggest that the RV and LV are unique cardiac chambers that undergo distinct remodeling with age. These robust differences may explain why therapies designed from LV-based studies fail to improve RV function and suggest that future efforts emphasizing ventricular differences may elucidate new therapies for healthy cardiac aging.\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14339\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14339","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Molecular and physiological mechanisms of aging are distinct in the cardiac right and left ventricles
Aging is the primary risk factor for heart disease, the leading global cause of death. Right ventricular (RV) function predicts survival in several age-related clinical contexts, yet no therapies directly improve RV function, in large part due to a poor mechanistic understanding of RV aging and how it is distinct from the widely studied left ventricle (LV). To address this gap, we comprehensively quantified RV functional and morphological remodeling with age. We further aimed to identify molecular mechanisms of RV aging thus we performed RNAseq on RV and LV from male and female young (4 months) and aged (19–21 months) C57BL6 mice. Contrary to the concentric hypertrophic remodeling and diastolic dysfunction that occurs in the LV, the aging RV underwent eccentric remodeling with significant dilation and impaired systolic function. Transcriptomic data were also consistent with ventricle-specific aging, with few genes (13%) similarly shared between ventricles with aging. KEGG analysis identified shared aging genes in inflammatory and immune cell pathways that were confirmed by flow cytometry that demonstrated higher percent of GR1+ myeloid cells in both ventricles. Unique RV aging genes enriched in the biosynthesis of saturated fatty acids, PPAR signaling, and butanoate metabolism, and we identified putative novel RV-specific aging genes. Together, we suggest that the RV and LV are unique cardiac chambers that undergo distinct remodeling with age. These robust differences may explain why therapies designed from LV-based studies fail to improve RV function and suggest that future efforts emphasizing ventricular differences may elucidate new therapies for healthy cardiac aging.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.