Rong Guo, Yunsheng Mao, Zuquan Xiang, Le Hao, Dingkun Wu, Lifei Song
{"title":"基于 LSTM 的 USV 机动运动预测研究","authors":"Rong Guo, Yunsheng Mao, Zuquan Xiang, Le Hao, Dingkun Wu, Lifei Song","doi":"10.3390/jmse12091661","DOIUrl":null,"url":null,"abstract":"Maneuvering motion prediction is central to the control and operation of ships, and the application of machine learning algorithms in this field is increasingly prevalent. However, challenges such as extensive training time, complex parameter tuning processes, and heavy reliance on mathematical models pose substantial obstacles to their application. To address these challenges, this paper proposes an LSTM-based modeling algorithm. First, a maneuvering motion model based on a real USV model was constructed, and typical operating conditions were simulated to obtain data. The Ornstein–Uhlenbeck process and the Hidden Markov Model were applied to the simulation data to generate noise and random data loss, respectively, thereby constructing a sample set that reflects real experiment characteristics. The sample data were then pre-processed for training, employing the MaxAbsScaler strategy for data normalization, Kalman filtering and RRF for data smoothing and noise reduction, and Lagrange interpolation for data resampling to enhance the robustness of the training data. Subsequently, based on the USV maneuvering motion model, an LSTM-based black-box motion prediction model was established. An in-depth comparative analysis and discussion of the model’s network structure and parameters were conducted, followed by the training of the ship maneuvering motion model using the optimized LSTM model. Generalization tests were then performed on a generalization set under Zigzag and turning conditions to validate the accuracy and generalization performance of the prediction model.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"34 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on LSTM-Based Maneuvering Motion Prediction for USVs\",\"authors\":\"Rong Guo, Yunsheng Mao, Zuquan Xiang, Le Hao, Dingkun Wu, Lifei Song\",\"doi\":\"10.3390/jmse12091661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maneuvering motion prediction is central to the control and operation of ships, and the application of machine learning algorithms in this field is increasingly prevalent. However, challenges such as extensive training time, complex parameter tuning processes, and heavy reliance on mathematical models pose substantial obstacles to their application. To address these challenges, this paper proposes an LSTM-based modeling algorithm. First, a maneuvering motion model based on a real USV model was constructed, and typical operating conditions were simulated to obtain data. The Ornstein–Uhlenbeck process and the Hidden Markov Model were applied to the simulation data to generate noise and random data loss, respectively, thereby constructing a sample set that reflects real experiment characteristics. The sample data were then pre-processed for training, employing the MaxAbsScaler strategy for data normalization, Kalman filtering and RRF for data smoothing and noise reduction, and Lagrange interpolation for data resampling to enhance the robustness of the training data. Subsequently, based on the USV maneuvering motion model, an LSTM-based black-box motion prediction model was established. An in-depth comparative analysis and discussion of the model’s network structure and parameters were conducted, followed by the training of the ship maneuvering motion model using the optimized LSTM model. Generalization tests were then performed on a generalization set under Zigzag and turning conditions to validate the accuracy and generalization performance of the prediction model.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091661\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091661","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Research on LSTM-Based Maneuvering Motion Prediction for USVs
Maneuvering motion prediction is central to the control and operation of ships, and the application of machine learning algorithms in this field is increasingly prevalent. However, challenges such as extensive training time, complex parameter tuning processes, and heavy reliance on mathematical models pose substantial obstacles to their application. To address these challenges, this paper proposes an LSTM-based modeling algorithm. First, a maneuvering motion model based on a real USV model was constructed, and typical operating conditions were simulated to obtain data. The Ornstein–Uhlenbeck process and the Hidden Markov Model were applied to the simulation data to generate noise and random data loss, respectively, thereby constructing a sample set that reflects real experiment characteristics. The sample data were then pre-processed for training, employing the MaxAbsScaler strategy for data normalization, Kalman filtering and RRF for data smoothing and noise reduction, and Lagrange interpolation for data resampling to enhance the robustness of the training data. Subsequently, based on the USV maneuvering motion model, an LSTM-based black-box motion prediction model was established. An in-depth comparative analysis and discussion of the model’s network structure and parameters were conducted, followed by the training of the ship maneuvering motion model using the optimized LSTM model. Generalization tests were then performed on a generalization set under Zigzag and turning conditions to validate the accuracy and generalization performance of the prediction model.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.