{"title":"鉴定以寄生虫谷胱甘肽合成酶为靶点的新型抗利什曼病药物:一种药物再利用方法","authors":"Manash Sarma, Kushal Bora, Preeti Ranjan, Vikash Kumar Dubey","doi":"10.1002/1873-3468.15016","DOIUrl":null,"url":null,"abstract":"Drug repurposing has emerged as an effective strategy against infectious diseases such as visceral leishmaniasis. Here, we evaluated four FDA‐approved drugs–valrubicin, ciclesonide, deflazacort, and telithromycin—for their anti‐leishmanial activity on <jats:italic>Leishmania donovani</jats:italic> parasites, especially their ability to target the enzyme glutathione synthetase (<jats:italic>Ld</jats:italic>GS), which enables parasite survival under oxidative stress in host macrophages. Valrubicin and ciclesonide exhibited superior inhibitory effects compared to deflazacort and telithromycin, inhibiting the promastigotes at very low concentrations, with IC<jats:sub>50</jats:sub> values of 1.09 ± 0.09 μ<jats:sc>m</jats:sc> and 2.09 ± 0.09 μ<jats:sc>m</jats:sc>, respectively. Subsequent testing on amastigotes revealed the IC<jats:sub>50</jats:sub> values of 1.74 ± 0.05 μ<jats:sc>m</jats:sc> and 3.32 ± 0.21 μ<jats:sc>m</jats:sc> for valrubicin and ciclesonide, respectively. Molecular and cellular level analysis further elucidated the mechanisms underlying the anti‐leishmanial activity of valrubicin and ciclesonide.","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"191 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of novel anti‐leishmanials targeting glutathione synthetase of the parasite: a drug repurposing approach\",\"authors\":\"Manash Sarma, Kushal Bora, Preeti Ranjan, Vikash Kumar Dubey\",\"doi\":\"10.1002/1873-3468.15016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug repurposing has emerged as an effective strategy against infectious diseases such as visceral leishmaniasis. Here, we evaluated four FDA‐approved drugs–valrubicin, ciclesonide, deflazacort, and telithromycin—for their anti‐leishmanial activity on <jats:italic>Leishmania donovani</jats:italic> parasites, especially their ability to target the enzyme glutathione synthetase (<jats:italic>Ld</jats:italic>GS), which enables parasite survival under oxidative stress in host macrophages. Valrubicin and ciclesonide exhibited superior inhibitory effects compared to deflazacort and telithromycin, inhibiting the promastigotes at very low concentrations, with IC<jats:sub>50</jats:sub> values of 1.09 ± 0.09 μ<jats:sc>m</jats:sc> and 2.09 ± 0.09 μ<jats:sc>m</jats:sc>, respectively. Subsequent testing on amastigotes revealed the IC<jats:sub>50</jats:sub> values of 1.74 ± 0.05 μ<jats:sc>m</jats:sc> and 3.32 ± 0.21 μ<jats:sc>m</jats:sc> for valrubicin and ciclesonide, respectively. Molecular and cellular level analysis further elucidated the mechanisms underlying the anti‐leishmanial activity of valrubicin and ciclesonide.\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.15016\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Identification of novel anti‐leishmanials targeting glutathione synthetase of the parasite: a drug repurposing approach
Drug repurposing has emerged as an effective strategy against infectious diseases such as visceral leishmaniasis. Here, we evaluated four FDA‐approved drugs–valrubicin, ciclesonide, deflazacort, and telithromycin—for their anti‐leishmanial activity on Leishmania donovani parasites, especially their ability to target the enzyme glutathione synthetase (LdGS), which enables parasite survival under oxidative stress in host macrophages. Valrubicin and ciclesonide exhibited superior inhibitory effects compared to deflazacort and telithromycin, inhibiting the promastigotes at very low concentrations, with IC50 values of 1.09 ± 0.09 μm and 2.09 ± 0.09 μm, respectively. Subsequent testing on amastigotes revealed the IC50 values of 1.74 ± 0.05 μm and 3.32 ± 0.21 μm for valrubicin and ciclesonide, respectively. Molecular and cellular level analysis further elucidated the mechanisms underlying the anti‐leishmanial activity of valrubicin and ciclesonide.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.