{"title":"大肠杆菌小热休克蛋白 IbpB 的两种新寡聚体在热应激条件下表现出最大的保持伴侣活性","authors":"Md Azaharuddin, Rakhi Dasgupta, Abhijit Das, Susmita Nandi, Anabadya Pal, Soumajit Chakrabarty, Pathikrit Bandopadhyay, Sourav Ghosh, Sanchita Nandy, Upasana Sett, Tarakdas Basu","doi":"10.1002/1873-3468.15019","DOIUrl":null,"url":null,"abstract":"<jats:italic>Escherichia coli</jats:italic> small heat‐shock protein IbpB (MW: 16 KDa) has holding chaperone activity and is present in cells at 30 °C as two large oligomers of MW 2.0–3.0 MDa and 600–700 KDa. We report here about the presence of two additional oligomers of MW around 400 and 130 KDa in cells under heat‐stress at 50 °C. These two smaller oligomers possess the most chaperone activity, as observed from the extent of inhibition of inactivation and aggregation separately, of L‐Lactate dehydrogenase in the presence of the individual oligomers at 52 and 60 °C, respectively. It is suggested here that the two larger oligomers act as poorly active storage forms, which under heat stress dissociate partially into smaller oligomers with high holdase activity.","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two new oligomers of E. coli small heat‐shock protein IbpB identified under heat stress exhibit maximum holding chaperone activity\",\"authors\":\"Md Azaharuddin, Rakhi Dasgupta, Abhijit Das, Susmita Nandi, Anabadya Pal, Soumajit Chakrabarty, Pathikrit Bandopadhyay, Sourav Ghosh, Sanchita Nandy, Upasana Sett, Tarakdas Basu\",\"doi\":\"10.1002/1873-3468.15019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:italic>Escherichia coli</jats:italic> small heat‐shock protein IbpB (MW: 16 KDa) has holding chaperone activity and is present in cells at 30 °C as two large oligomers of MW 2.0–3.0 MDa and 600–700 KDa. We report here about the presence of two additional oligomers of MW around 400 and 130 KDa in cells under heat‐stress at 50 °C. These two smaller oligomers possess the most chaperone activity, as observed from the extent of inhibition of inactivation and aggregation separately, of L‐Lactate dehydrogenase in the presence of the individual oligomers at 52 and 60 °C, respectively. It is suggested here that the two larger oligomers act as poorly active storage forms, which under heat stress dissociate partially into smaller oligomers with high holdase activity.\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.15019\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Two new oligomers of E. coli small heat‐shock protein IbpB identified under heat stress exhibit maximum holding chaperone activity
Escherichia coli small heat‐shock protein IbpB (MW: 16 KDa) has holding chaperone activity and is present in cells at 30 °C as two large oligomers of MW 2.0–3.0 MDa and 600–700 KDa. We report here about the presence of two additional oligomers of MW around 400 and 130 KDa in cells under heat‐stress at 50 °C. These two smaller oligomers possess the most chaperone activity, as observed from the extent of inhibition of inactivation and aggregation separately, of L‐Lactate dehydrogenase in the presence of the individual oligomers at 52 and 60 °C, respectively. It is suggested here that the two larger oligomers act as poorly active storage forms, which under heat stress dissociate partially into smaller oligomers with high holdase activity.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.