Haixing Zhang, Chaoyue Sun, Xuan Zhang, Xuan Cheng, Guiwen Guo, Wang Geng, Peiwei Gong, Shumiao Zhang, Mianran Chao and Duyi Shen
{"title":"Co(II)/Oxone 氧化系统通过 C-N 裂解仲酰胺以获得伯酰胺","authors":"Haixing Zhang, Chaoyue Sun, Xuan Zhang, Xuan Cheng, Guiwen Guo, Wang Geng, Peiwei Gong, Shumiao Zhang, Mianran Chao and Duyi Shen","doi":"10.1039/D4OB00974F","DOIUrl":null,"url":null,"abstract":"<p >Cleavage of the C–N bond of a secondary amide could provide alternative access to primary amides; however, this strategy remains challenging due to oxidation resistance of the amide. Herein, we employed the cobalt(<small>II</small>)/Oxone catalytic system, one of the advanced oxidation processes (AOPs), to make it available to break the strong C–N bond of various secondary (sulfon)amides, especially those bearing electron-poor or <em>ortho</em>-substituted <em>N</em>-arenes, <em>en route</em> to desirable primary (sulfon)amides. Control experiments showed that it was probably not the generally-considered persulfate anion radical in the cobalt/peroxymonosulfate (Co/PMS) system but the proposed high-valent cobalt-oxo intermediate that should be the major active species for the initial N–H oxidation of <em>N</em>-aryl amides. In the case of <em>N</em>-alkylated secondary amides, the α-C–H bond, rather than the N–H bond, should be oxidized first by both the reactive radicals and high-valent cobalt-oxo species. This work not only establishes an efficient method for removing the <em>N</em>-substituents of secondary amides at low cost, with readily available and eco-friendly reagents, but also demonstrates further synthetic application and provides more insight into intermediates for metal-based AOPs in environmental remediation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C–N cleavage of secondary amide to access primary amide by a Co(ii)/Oxone oxidation system†\",\"authors\":\"Haixing Zhang, Chaoyue Sun, Xuan Zhang, Xuan Cheng, Guiwen Guo, Wang Geng, Peiwei Gong, Shumiao Zhang, Mianran Chao and Duyi Shen\",\"doi\":\"10.1039/D4OB00974F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cleavage of the C–N bond of a secondary amide could provide alternative access to primary amides; however, this strategy remains challenging due to oxidation resistance of the amide. Herein, we employed the cobalt(<small>II</small>)/Oxone catalytic system, one of the advanced oxidation processes (AOPs), to make it available to break the strong C–N bond of various secondary (sulfon)amides, especially those bearing electron-poor or <em>ortho</em>-substituted <em>N</em>-arenes, <em>en route</em> to desirable primary (sulfon)amides. Control experiments showed that it was probably not the generally-considered persulfate anion radical in the cobalt/peroxymonosulfate (Co/PMS) system but the proposed high-valent cobalt-oxo intermediate that should be the major active species for the initial N–H oxidation of <em>N</em>-aryl amides. In the case of <em>N</em>-alkylated secondary amides, the α-C–H bond, rather than the N–H bond, should be oxidized first by both the reactive radicals and high-valent cobalt-oxo species. This work not only establishes an efficient method for removing the <em>N</em>-substituents of secondary amides at low cost, with readily available and eco-friendly reagents, but also demonstrates further synthetic application and provides more insight into intermediates for metal-based AOPs in environmental remediation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ob/d4ob00974f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ob/d4ob00974f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
C–N cleavage of secondary amide to access primary amide by a Co(ii)/Oxone oxidation system†
Cleavage of the C–N bond of a secondary amide could provide alternative access to primary amides; however, this strategy remains challenging due to oxidation resistance of the amide. Herein, we employed the cobalt(II)/Oxone catalytic system, one of the advanced oxidation processes (AOPs), to make it available to break the strong C–N bond of various secondary (sulfon)amides, especially those bearing electron-poor or ortho-substituted N-arenes, en route to desirable primary (sulfon)amides. Control experiments showed that it was probably not the generally-considered persulfate anion radical in the cobalt/peroxymonosulfate (Co/PMS) system but the proposed high-valent cobalt-oxo intermediate that should be the major active species for the initial N–H oxidation of N-aryl amides. In the case of N-alkylated secondary amides, the α-C–H bond, rather than the N–H bond, should be oxidized first by both the reactive radicals and high-valent cobalt-oxo species. This work not only establishes an efficient method for removing the N-substituents of secondary amides at low cost, with readily available and eco-friendly reagents, but also demonstrates further synthetic application and provides more insight into intermediates for metal-based AOPs in environmental remediation.