{"title":"用于浮动风力涡轮机网络物理测试的缆索驱动机器人的性能","authors":"Yngve Jenssen, Thomas Sauder, Maxime Thys","doi":"10.3390/jmse12091669","DOIUrl":null,"url":null,"abstract":"Cyber–physical testing has been applied for a decade in hydrodynamic laboratories to assess the dynamic performance of floating wind turbines (FWTs) in realistic wind and wave conditions. Aerodynamic loads, computed by a numerical simulator fed with model test measurements, are applied in real time on the physical model using actuators. The present paper proposes a set of short and targeted benchmark tests that aim to quantify the performance of actuators used in cyber–physical FWT testing. They aim at ensuring good load tracking over all frequencies of interest and satisfactory disturbance rejection for large motions to provide a realistic test setup. These benchmark tests are exemplified on two radically different 15 MW FWT models tested at SINTEF Ocean using a cable-driven robot.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of a Cable-Driven Robot Used for Cyber–Physical Testing of Floating Wind Turbines\",\"authors\":\"Yngve Jenssen, Thomas Sauder, Maxime Thys\",\"doi\":\"10.3390/jmse12091669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber–physical testing has been applied for a decade in hydrodynamic laboratories to assess the dynamic performance of floating wind turbines (FWTs) in realistic wind and wave conditions. Aerodynamic loads, computed by a numerical simulator fed with model test measurements, are applied in real time on the physical model using actuators. The present paper proposes a set of short and targeted benchmark tests that aim to quantify the performance of actuators used in cyber–physical FWT testing. They aim at ensuring good load tracking over all frequencies of interest and satisfactory disturbance rejection for large motions to provide a realistic test setup. These benchmark tests are exemplified on two radically different 15 MW FWT models tested at SINTEF Ocean using a cable-driven robot.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091669\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091669","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Performance of a Cable-Driven Robot Used for Cyber–Physical Testing of Floating Wind Turbines
Cyber–physical testing has been applied for a decade in hydrodynamic laboratories to assess the dynamic performance of floating wind turbines (FWTs) in realistic wind and wave conditions. Aerodynamic loads, computed by a numerical simulator fed with model test measurements, are applied in real time on the physical model using actuators. The present paper proposes a set of short and targeted benchmark tests that aim to quantify the performance of actuators used in cyber–physical FWT testing. They aim at ensuring good load tracking over all frequencies of interest and satisfactory disturbance rejection for large motions to provide a realistic test setup. These benchmark tests are exemplified on two radically different 15 MW FWT models tested at SINTEF Ocean using a cable-driven robot.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.