为大规模多输入多输出 CSI 反馈设计的具有离散潜伏表示的有效网络

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Xinran Sun;Zhengming Zhang;Chunguo Li;Yongming Huang;Luxi Yang
{"title":"为大规模多输入多输出 CSI 反馈设计的具有离散潜伏表示的有效网络","authors":"Xinran Sun;Zhengming Zhang;Chunguo Li;Yongming Huang;Luxi Yang","doi":"10.1109/LCOMM.2024.3462977","DOIUrl":null,"url":null,"abstract":"The efficacy of massive multiple-input multiple-output techniques heavily relies on the accuracy of the downlink channel state information (CSI) in frequency division duplexing systems. Many works focus on CSI compression and quantization to enhance the CSI reconstruction accuracy with lower overhead of downlink pilots and uplink feedback. In this letter, an advanced network named Conformer is first introduced for CSI compression, which combines self-attention mechanisms and convolution to efficiently extract both global and detailed CSI features. In order to further reduce the feedback overhead, we also propose a vector quantization scheme based on the discrete latent representation of the vector quantised-variational autoencoder (VQ-VAE), namely VQCFB. Integrating Conformer blocks with VQCFB, the proposed encoder-quantizer-decoder framework achieves high-quality CSI reconstruction with low feedback overhead, outperforming previous state-of-the-art networks.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 11","pages":"2648-2652"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Network With Discrete Latent Representation Designed for Massive MIMO CSI Feedback\",\"authors\":\"Xinran Sun;Zhengming Zhang;Chunguo Li;Yongming Huang;Luxi Yang\",\"doi\":\"10.1109/LCOMM.2024.3462977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficacy of massive multiple-input multiple-output techniques heavily relies on the accuracy of the downlink channel state information (CSI) in frequency division duplexing systems. Many works focus on CSI compression and quantization to enhance the CSI reconstruction accuracy with lower overhead of downlink pilots and uplink feedback. In this letter, an advanced network named Conformer is first introduced for CSI compression, which combines self-attention mechanisms and convolution to efficiently extract both global and detailed CSI features. In order to further reduce the feedback overhead, we also propose a vector quantization scheme based on the discrete latent representation of the vector quantised-variational autoencoder (VQ-VAE), namely VQCFB. Integrating Conformer blocks with VQCFB, the proposed encoder-quantizer-decoder framework achieves high-quality CSI reconstruction with low feedback overhead, outperforming previous state-of-the-art networks.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 11\",\"pages\":\"2648-2652\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10683739/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10683739/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

大规模多输入多输出技术的功效在很大程度上取决于频分双工系统中下行链路信道状态信息(CSI)的准确性。许多研究都侧重于 CSI 压缩和量化,以提高 CSI 重构精度,同时降低下行链路先导和上行链路反馈的开销。在这封信中,首先介绍了一种用于 CSI 压缩的先进网络,名为 Conformer,它结合了自注意机制和卷积,能有效地提取全局和细节 CSI 特征。为了进一步减少反馈开销,我们还提出了一种基于矢量量化变异自动编码器(VQ-VAE)离散潜表示的矢量量化方案,即 VQCFB。将 Conformer 块与 VQCFB 相集成,所提出的编码器-量化器-解码器框架以较低的反馈开销实现了高质量的 CSI 重构,性能优于以前的先进网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Network With Discrete Latent Representation Designed for Massive MIMO CSI Feedback
The efficacy of massive multiple-input multiple-output techniques heavily relies on the accuracy of the downlink channel state information (CSI) in frequency division duplexing systems. Many works focus on CSI compression and quantization to enhance the CSI reconstruction accuracy with lower overhead of downlink pilots and uplink feedback. In this letter, an advanced network named Conformer is first introduced for CSI compression, which combines self-attention mechanisms and convolution to efficiently extract both global and detailed CSI features. In order to further reduce the feedback overhead, we also propose a vector quantization scheme based on the discrete latent representation of the vector quantised-variational autoencoder (VQ-VAE), namely VQCFB. Integrating Conformer blocks with VQCFB, the proposed encoder-quantizer-decoder framework achieves high-quality CSI reconstruction with low feedback overhead, outperforming previous state-of-the-art networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信