Mohamed M. Elnagar, Hagar K. Hassan, Ludwig Kibler, Timo Jacob
{"title":"氯离子对基于金属有机框架的镁半固态电解质电化学性能的影响","authors":"Mohamed M. Elnagar, Hagar K. Hassan, Ludwig Kibler, Timo Jacob","doi":"10.1002/batt.202400420","DOIUrl":null,"url":null,"abstract":"The majority of research on magnesium (Mg) electrolytes has focused on enhancing reversible Mg deposition, often employing chloride-containing electrolytes. However, there is a notable gap in the literature regarding the influence of chloride ions in semi-solid Mg electrolytes. In this study, we systematically explore the impact of chloride ions on Mg deposition/dissolution on a copper (Cu) anode using a semi-solid electrolyte composed of Mg-based mixed metal-organic frameworks, MgCl2 and Mg(TFSI)2. We separate the Mg deposition/dissolution process from changes in the anode’s surface morphology through cyclic voltammetry and galvanostatic cycling. In this respect, the morphological and compositional transformations in the electrolyte and electrode following galvanostatic cycling are meticulously investigated. Initial potential cycling reveals the feasibility of Mg deposition/dissolution on Cu electrodes, albeit with reduced reversibility in subsequent cycles. Extending the upper potential limit to 4.0 V vs. Mg/Mg2+ enhances Mg dissolution, attributed to chloride ions facilitating Cu surface dissolution. Our findings provide insights into optimizing semi-solid electrolytes for advanced Magnesium battery technologies.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"18 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-based Semi-Solid Electrolytes.\",\"authors\":\"Mohamed M. Elnagar, Hagar K. Hassan, Ludwig Kibler, Timo Jacob\",\"doi\":\"10.1002/batt.202400420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of research on magnesium (Mg) electrolytes has focused on enhancing reversible Mg deposition, often employing chloride-containing electrolytes. However, there is a notable gap in the literature regarding the influence of chloride ions in semi-solid Mg electrolytes. In this study, we systematically explore the impact of chloride ions on Mg deposition/dissolution on a copper (Cu) anode using a semi-solid electrolyte composed of Mg-based mixed metal-organic frameworks, MgCl2 and Mg(TFSI)2. We separate the Mg deposition/dissolution process from changes in the anode’s surface morphology through cyclic voltammetry and galvanostatic cycling. In this respect, the morphological and compositional transformations in the electrolyte and electrode following galvanostatic cycling are meticulously investigated. Initial potential cycling reveals the feasibility of Mg deposition/dissolution on Cu electrodes, albeit with reduced reversibility in subsequent cycles. Extending the upper potential limit to 4.0 V vs. Mg/Mg2+ enhances Mg dissolution, attributed to chloride ions facilitating Cu surface dissolution. Our findings provide insights into optimizing semi-solid electrolytes for advanced Magnesium battery technologies.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202400420\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400420","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-based Semi-Solid Electrolytes.
The majority of research on magnesium (Mg) electrolytes has focused on enhancing reversible Mg deposition, often employing chloride-containing electrolytes. However, there is a notable gap in the literature regarding the influence of chloride ions in semi-solid Mg electrolytes. In this study, we systematically explore the impact of chloride ions on Mg deposition/dissolution on a copper (Cu) anode using a semi-solid electrolyte composed of Mg-based mixed metal-organic frameworks, MgCl2 and Mg(TFSI)2. We separate the Mg deposition/dissolution process from changes in the anode’s surface morphology through cyclic voltammetry and galvanostatic cycling. In this respect, the morphological and compositional transformations in the electrolyte and electrode following galvanostatic cycling are meticulously investigated. Initial potential cycling reveals the feasibility of Mg deposition/dissolution on Cu electrodes, albeit with reduced reversibility in subsequent cycles. Extending the upper potential limit to 4.0 V vs. Mg/Mg2+ enhances Mg dissolution, attributed to chloride ions facilitating Cu surface dissolution. Our findings provide insights into optimizing semi-solid electrolytes for advanced Magnesium battery technologies.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.