Luca Muscarà, Marco Cisternino, Andrea Ferrero, Andrea Iob, Francesco Larocca
{"title":"在低雷诺数分离流体上利用场反演的局部和全局策略比较","authors":"Luca Muscarà, Marco Cisternino, Andrea Ferrero, Andrea Iob, Francesco Larocca","doi":"10.3390/app14188382","DOIUrl":null,"url":null,"abstract":"The prediction of separated flows at low Reynolds numbers is crucial for several applications in aerospace and energy fields. Reynolds-averaged Navier–Stokes (RANS) equations are widely used but their accuracy is limited in the presence of transition or separation. In this work, two different strategies for improving RANS simulations by means of field inversion are discussed. Both strategies require solving an optimization problem to identify a correction field by minimizing the error on some measurable data. The obtained correction field is exploited with two alternative strategies. The first strategy aims to the identification of a relation that allows to express the local correction field as a function of some local flow features. However, this regression can be difficult or even impossible because the relation between the assumed input variables and the local correction could not be a function. For this reason, an alternative is proposed: a U-Net model is trained on the original and corrected RANS results. In this way, it is possible to perform a prediction with the original RANS model and then correct it by means of the U-Net. The methodologies are evaluated and compared on the flow around the NACA0021 and the SD7003 airfoils.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Local and Global Strategies for Exploiting Field Inversion on Separated Flows at Low Reynolds Number\",\"authors\":\"Luca Muscarà, Marco Cisternino, Andrea Ferrero, Andrea Iob, Francesco Larocca\",\"doi\":\"10.3390/app14188382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of separated flows at low Reynolds numbers is crucial for several applications in aerospace and energy fields. Reynolds-averaged Navier–Stokes (RANS) equations are widely used but their accuracy is limited in the presence of transition or separation. In this work, two different strategies for improving RANS simulations by means of field inversion are discussed. Both strategies require solving an optimization problem to identify a correction field by minimizing the error on some measurable data. The obtained correction field is exploited with two alternative strategies. The first strategy aims to the identification of a relation that allows to express the local correction field as a function of some local flow features. However, this regression can be difficult or even impossible because the relation between the assumed input variables and the local correction could not be a function. For this reason, an alternative is proposed: a U-Net model is trained on the original and corrected RANS results. In this way, it is possible to perform a prediction with the original RANS model and then correct it by means of the U-Net. The methodologies are evaluated and compared on the flow around the NACA0021 and the SD7003 airfoils.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A Comparison of Local and Global Strategies for Exploiting Field Inversion on Separated Flows at Low Reynolds Number
The prediction of separated flows at low Reynolds numbers is crucial for several applications in aerospace and energy fields. Reynolds-averaged Navier–Stokes (RANS) equations are widely used but their accuracy is limited in the presence of transition or separation. In this work, two different strategies for improving RANS simulations by means of field inversion are discussed. Both strategies require solving an optimization problem to identify a correction field by minimizing the error on some measurable data. The obtained correction field is exploited with two alternative strategies. The first strategy aims to the identification of a relation that allows to express the local correction field as a function of some local flow features. However, this regression can be difficult or even impossible because the relation between the assumed input variables and the local correction could not be a function. For this reason, an alternative is proposed: a U-Net model is trained on the original and corrected RANS results. In this way, it is possible to perform a prediction with the original RANS model and then correct it by means of the U-Net. The methodologies are evaluated and compared on the flow around the NACA0021 and the SD7003 airfoils.
期刊介绍:
APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.