Srinidi Badhrinathan, Huidong Dai, Gaind P. Pandey
{"title":"设计高能量密度锂硫袋电池的挑战和方法","authors":"Srinidi Badhrinathan, Huidong Dai, Gaind P. Pandey","doi":"10.1002/batt.202400544","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur (Li-S) batteries are of great interest as next-generation energy storage devices in a wide variety of applications, due to their high specific capacity and the environmental abundance of sulfur. However, liquid electrolyte Li-S technology faces several challenges such as polysulfide shuttling, anode corrosion and sluggish cathode kinetics. Practical deployment of Li-S batteries requires evaluation in large-format, high energy density pouch cells. Stringent operating conditions such as high sulfur loading and operating current, low electrolyte amount, and limited anode quantity are required for high energy density pouch cells, which further curtails the electrochemical performance and cycle life. This review aims to provide an understanding of the different failure mechanisms of large-format Li-S pouch cells and formulate key design parameters of Li-S pouch cells that have high capacity, coulombic efficiency and long cycle life. Recent developments in Li-S pouch cells are then discussed, focusing on cathode and electrolyte design for polysulfide immobilization, accelerated sulfur conversion kinetics, and Li anode protection. A review of advanced characterization techniques suitable for Li-S pouch cell studies is also provided. Finally, viewpoints are offered on the remaining challenges and prospects to guide future research in scaling up Li-S technology for real-world applications.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"51 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and Approaches to Designing High-Energy Density Lithium-Sulfur Pouch Cells\",\"authors\":\"Srinidi Badhrinathan, Huidong Dai, Gaind P. Pandey\",\"doi\":\"10.1002/batt.202400544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-sulfur (Li-S) batteries are of great interest as next-generation energy storage devices in a wide variety of applications, due to their high specific capacity and the environmental abundance of sulfur. However, liquid electrolyte Li-S technology faces several challenges such as polysulfide shuttling, anode corrosion and sluggish cathode kinetics. Practical deployment of Li-S batteries requires evaluation in large-format, high energy density pouch cells. Stringent operating conditions such as high sulfur loading and operating current, low electrolyte amount, and limited anode quantity are required for high energy density pouch cells, which further curtails the electrochemical performance and cycle life. This review aims to provide an understanding of the different failure mechanisms of large-format Li-S pouch cells and formulate key design parameters of Li-S pouch cells that have high capacity, coulombic efficiency and long cycle life. Recent developments in Li-S pouch cells are then discussed, focusing on cathode and electrolyte design for polysulfide immobilization, accelerated sulfur conversion kinetics, and Li anode protection. A review of advanced characterization techniques suitable for Li-S pouch cell studies is also provided. Finally, viewpoints are offered on the remaining challenges and prospects to guide future research in scaling up Li-S technology for real-world applications.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202400544\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400544","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Challenges and Approaches to Designing High-Energy Density Lithium-Sulfur Pouch Cells
Lithium-sulfur (Li-S) batteries are of great interest as next-generation energy storage devices in a wide variety of applications, due to their high specific capacity and the environmental abundance of sulfur. However, liquid electrolyte Li-S technology faces several challenges such as polysulfide shuttling, anode corrosion and sluggish cathode kinetics. Practical deployment of Li-S batteries requires evaluation in large-format, high energy density pouch cells. Stringent operating conditions such as high sulfur loading and operating current, low electrolyte amount, and limited anode quantity are required for high energy density pouch cells, which further curtails the electrochemical performance and cycle life. This review aims to provide an understanding of the different failure mechanisms of large-format Li-S pouch cells and formulate key design parameters of Li-S pouch cells that have high capacity, coulombic efficiency and long cycle life. Recent developments in Li-S pouch cells are then discussed, focusing on cathode and electrolyte design for polysulfide immobilization, accelerated sulfur conversion kinetics, and Li anode protection. A review of advanced characterization techniques suitable for Li-S pouch cell studies is also provided. Finally, viewpoints are offered on the remaining challenges and prospects to guide future research in scaling up Li-S technology for real-world applications.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.