循环动态载荷下含气煤的渗透性演变和敏感性分析

Q1 Mathematics
Zhongzhong Liu, Yuxuan Liu, Zonghao Wang, Wentao Huang
{"title":"循环动态载荷下含气煤的渗透性演变和敏感性分析","authors":"Zhongzhong Liu, Yuxuan Liu, Zonghao Wang, Wentao Huang","doi":"10.3390/app14188373","DOIUrl":null,"url":null,"abstract":"It is imperative to conduct experimental studies on the seepage behavior of gas-bearing coal under cyclic dynamic loading conditions. This paper focuses on the evolution of coal permeability under the combined effects of dynamic loading, static loading, and gas adsorption. The principal conclusions are as follows: (1) As the frequency and amplitude of dynamic loading increase, the development of pore and fissure structures within the coal body becomes increasingly pronounced during dynamic loading cycles, resulting in a gradual rise in permeability. Notably, as the coal approaches its yielding stage, the permeability can increase by up to 47%. (2) The permeability curve is divided into four regions: the compaction reduction zone, the oscillation zone, the gradual recovery zone, and the abrupt failure increase zone. Ultimately, in the failure phase, the permeability surges dramatically, potentially reaching four to five times the initial permeability. (3) When the static loading stage and dynamic load are constant, the rate of change in coal permeability decreases with increasing adsorption amounts. When the adsorption amount is constant, the rate of change in permeability of the coal under dynamic loading increases with the increase in the static loading stress stage, with the maximum increase reaching 75.2%. It can be concluded from the rate of change in permeability and the dynamic loading sensitivity coefficient that the permeability of coal is highly sensitive to cyclic dynamic loading, with increased sensitivity associated with larger static loading stages and decreased sensitivity with greater adsorption amounts.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Permeability and Sensitivity Analysis of Gas-Bearing Coal under Cyclic Dynamic Loading\",\"authors\":\"Zhongzhong Liu, Yuxuan Liu, Zonghao Wang, Wentao Huang\",\"doi\":\"10.3390/app14188373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is imperative to conduct experimental studies on the seepage behavior of gas-bearing coal under cyclic dynamic loading conditions. This paper focuses on the evolution of coal permeability under the combined effects of dynamic loading, static loading, and gas adsorption. The principal conclusions are as follows: (1) As the frequency and amplitude of dynamic loading increase, the development of pore and fissure structures within the coal body becomes increasingly pronounced during dynamic loading cycles, resulting in a gradual rise in permeability. Notably, as the coal approaches its yielding stage, the permeability can increase by up to 47%. (2) The permeability curve is divided into four regions: the compaction reduction zone, the oscillation zone, the gradual recovery zone, and the abrupt failure increase zone. Ultimately, in the failure phase, the permeability surges dramatically, potentially reaching four to five times the initial permeability. (3) When the static loading stage and dynamic load are constant, the rate of change in coal permeability decreases with increasing adsorption amounts. When the adsorption amount is constant, the rate of change in permeability of the coal under dynamic loading increases with the increase in the static loading stress stage, with the maximum increase reaching 75.2%. It can be concluded from the rate of change in permeability and the dynamic loading sensitivity coefficient that the permeability of coal is highly sensitive to cyclic dynamic loading, with increased sensitivity associated with larger static loading stages and decreased sensitivity with greater adsorption amounts.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

对含瓦斯煤在循环动态加载条件下的渗流行为进行实验研究势在必行。本文重点研究了煤在动态加载、静态加载和瓦斯吸附共同作用下的渗透性演变。主要结论如下(1) 随着动态加载频率和振幅的增加,煤体内部孔隙和裂隙结构的发展在动态加载循环中变得越来越明显,导致透气性逐渐上升。值得注意的是,当煤炭接近屈服阶段时,渗透率最高可增加 47%。(2) 渗透率曲线分为四个区域:压实减少区、振荡区、逐渐恢复区和突然破坏增加区。最终,在破坏阶段,渗透率急剧上升,可能达到初始渗透率的四至五倍。(3)当静载荷阶段和动载荷不变时,煤的透气性变化率随吸附量的增加而减小。当吸附量不变时,煤在动态载荷作用下的透气性变化率随静态载荷应力阶段的增加而增加,最大增幅达到 75.2%。从透气性变化率和动态加载敏感系数可以得出结论,煤的透气性对循环动态加载高度敏感,静态加载阶段越大敏感性越高,吸附量越大敏感性越低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Permeability and Sensitivity Analysis of Gas-Bearing Coal under Cyclic Dynamic Loading
It is imperative to conduct experimental studies on the seepage behavior of gas-bearing coal under cyclic dynamic loading conditions. This paper focuses on the evolution of coal permeability under the combined effects of dynamic loading, static loading, and gas adsorption. The principal conclusions are as follows: (1) As the frequency and amplitude of dynamic loading increase, the development of pore and fissure structures within the coal body becomes increasingly pronounced during dynamic loading cycles, resulting in a gradual rise in permeability. Notably, as the coal approaches its yielding stage, the permeability can increase by up to 47%. (2) The permeability curve is divided into four regions: the compaction reduction zone, the oscillation zone, the gradual recovery zone, and the abrupt failure increase zone. Ultimately, in the failure phase, the permeability surges dramatically, potentially reaching four to five times the initial permeability. (3) When the static loading stage and dynamic load are constant, the rate of change in coal permeability decreases with increasing adsorption amounts. When the adsorption amount is constant, the rate of change in permeability of the coal under dynamic loading increases with the increase in the static loading stress stage, with the maximum increase reaching 75.2%. It can be concluded from the rate of change in permeability and the dynamic loading sensitivity coefficient that the permeability of coal is highly sensitive to cyclic dynamic loading, with increased sensitivity associated with larger static loading stages and decreased sensitivity with greater adsorption amounts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences
Applied Sciences Mathematics-Applied Mathematics
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信