{"title":"论双曲线分布的性质","authors":"Roman V. Ivanov","doi":"10.3390/math12182888","DOIUrl":null,"url":null,"abstract":"This paper is set to analytically describe properties of the hyperbolic distribution. This law, along with the variance-gamma distribution, is one of the most popular normal mean–variance mixtures from the point of view of various applications. We have found closed form expressions for the cumulative distribution and partial-moment-generating functions of the hyperbolic distribution. The obtained formulas use the values of the Humbert confluent hypergeometric and Whittaker special functions. The results are applied to the problem of European option pricing in the related Lévy model of financial market. The research demonstrates that the discussed normal mean–variance mixture is analytically tractable.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Properties of the Hyperbolic Distribution\",\"authors\":\"Roman V. Ivanov\",\"doi\":\"10.3390/math12182888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is set to analytically describe properties of the hyperbolic distribution. This law, along with the variance-gamma distribution, is one of the most popular normal mean–variance mixtures from the point of view of various applications. We have found closed form expressions for the cumulative distribution and partial-moment-generating functions of the hyperbolic distribution. The obtained formulas use the values of the Humbert confluent hypergeometric and Whittaker special functions. The results are applied to the problem of European option pricing in the related Lévy model of financial market. The research demonstrates that the discussed normal mean–variance mixture is analytically tractable.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
This paper is set to analytically describe properties of the hyperbolic distribution. This law, along with the variance-gamma distribution, is one of the most popular normal mean–variance mixtures from the point of view of various applications. We have found closed form expressions for the cumulative distribution and partial-moment-generating functions of the hyperbolic distribution. The obtained formulas use the values of the Humbert confluent hypergeometric and Whittaker special functions. The results are applied to the problem of European option pricing in the related Lévy model of financial market. The research demonstrates that the discussed normal mean–variance mixture is analytically tractable.