{"title":"基于二维材料的墨水,用于开发电磁干扰 (EMI) 屏蔽的元结构","authors":"Bishakha Ray, R. Siyad, Suwarna Datar","doi":"10.1557/s43579-024-00639-z","DOIUrl":null,"url":null,"abstract":"<p>2-D transition metal-chalcogenides (TMCs) are lucrative as frequency selective absorbers (FSAs) because of strong electronic polarization and enhanced dielectric loss. In the present work we have developed inks made of 2-D TMCs such as NiSe<sub>2</sub>, CoSe<sub>2</sub> and used them to develop metastructures having high reflection loss. The structures have conductivity peaks depending on concentration of the 2D structure in the paint. It is observed that the absorption bandwidth and frequency seem to depend on the composition of 2D TMC along with the structures made. This provides an additional method to modulate the properties of FSA.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D materials-based ink to develop meta-structures for electromagnetic interference (EMI) shielding\",\"authors\":\"Bishakha Ray, R. Siyad, Suwarna Datar\",\"doi\":\"10.1557/s43579-024-00639-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>2-D transition metal-chalcogenides (TMCs) are lucrative as frequency selective absorbers (FSAs) because of strong electronic polarization and enhanced dielectric loss. In the present work we have developed inks made of 2-D TMCs such as NiSe<sub>2</sub>, CoSe<sub>2</sub> and used them to develop metastructures having high reflection loss. The structures have conductivity peaks depending on concentration of the 2D structure in the paint. It is observed that the absorption bandwidth and frequency seem to depend on the composition of 2D TMC along with the structures made. This provides an additional method to modulate the properties of FSA.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00639-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00639-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
2D materials-based ink to develop meta-structures for electromagnetic interference (EMI) shielding
2-D transition metal-chalcogenides (TMCs) are lucrative as frequency selective absorbers (FSAs) because of strong electronic polarization and enhanced dielectric loss. In the present work we have developed inks made of 2-D TMCs such as NiSe2, CoSe2 and used them to develop metastructures having high reflection loss. The structures have conductivity peaks depending on concentration of the 2D structure in the paint. It is observed that the absorption bandwidth and frequency seem to depend on the composition of 2D TMC along with the structures made. This provides an additional method to modulate the properties of FSA.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.