涉及格鲁申算子的加权椭圆方程稳定解的柳维尔结果

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wafa Mtaouaa
{"title":"涉及格鲁申算子的加权椭圆方程稳定解的柳维尔结果","authors":"Wafa Mtaouaa","doi":"10.1007/s11587-024-00887-0","DOIUrl":null,"url":null,"abstract":"<p>We examine the following weighted degenerate elliptic equation involving the Grushin operator: </p><span>$$\\begin{aligned} \\Delta _s u+\\vartheta _{s}(x') |u|^{\\theta -1}u =0\\;\\;\\; \\text{ in }\\,\\, \\mathbb {R}^N,\\;\\;N&gt;2, \\;\\; \\theta &gt;1, \\end{aligned}$$</span><p>where <span>\\(x'=(x_{1},...,x_{m})\\in \\mathbb {R}^m,\\)</span> <span>\\(1\\le m\\le N,\\)</span> <span>\\(\\vartheta _{s} \\in C(\\mathbb {R}^m, \\mathbb {R})\\)</span> is a continuous positive function satisfying </p><span>$$\\begin{aligned} \\displaystyle {\\lim _{|x'|_{s}\\rightarrow \\infty }}\\frac{\\vartheta _{s}(x')}{|x'|_{s}^{\\alpha }}&gt;0,\\;\\;\\; \\text{ for } \\text{ some }\\,\\,\\alpha &gt;-2, \\end{aligned}$$</span><p>and <span>\\(\\Delta _s\\)</span> is an operator of the form </p><span>$$\\begin{aligned} \\Delta _s:=\\sum _{i=1}^k \\partial _{x_{i}}(s_{i}^2\\partial _{x_{i}}). \\end{aligned}$$</span><p>Under some general hypotheses of the functions <span>\\(s_i,\\;i=1,\\dots , k,\\)</span> we establish some new Liouville type theorems for stable solutions of this equation for a large classe of weights. Our results recover and considerably improve the previous works (Mtiri in Acta Appl Math 174:7, 2021; Farina and Hasegawa in Proc Royal Soc Edinburgh 150:1567, 2020).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville results for stable solutions of weighted elliptic equations involving the Grushin operator\",\"authors\":\"Wafa Mtaouaa\",\"doi\":\"10.1007/s11587-024-00887-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We examine the following weighted degenerate elliptic equation involving the Grushin operator: </p><span>$$\\\\begin{aligned} \\\\Delta _s u+\\\\vartheta _{s}(x') |u|^{\\\\theta -1}u =0\\\\;\\\\;\\\\; \\\\text{ in }\\\\,\\\\, \\\\mathbb {R}^N,\\\\;\\\\;N&gt;2, \\\\;\\\\; \\\\theta &gt;1, \\\\end{aligned}$$</span><p>where <span>\\\\(x'=(x_{1},...,x_{m})\\\\in \\\\mathbb {R}^m,\\\\)</span> <span>\\\\(1\\\\le m\\\\le N,\\\\)</span> <span>\\\\(\\\\vartheta _{s} \\\\in C(\\\\mathbb {R}^m, \\\\mathbb {R})\\\\)</span> is a continuous positive function satisfying </p><span>$$\\\\begin{aligned} \\\\displaystyle {\\\\lim _{|x'|_{s}\\\\rightarrow \\\\infty }}\\\\frac{\\\\vartheta _{s}(x')}{|x'|_{s}^{\\\\alpha }}&gt;0,\\\\;\\\\;\\\\; \\\\text{ for } \\\\text{ some }\\\\,\\\\,\\\\alpha &gt;-2, \\\\end{aligned}$$</span><p>and <span>\\\\(\\\\Delta _s\\\\)</span> is an operator of the form </p><span>$$\\\\begin{aligned} \\\\Delta _s:=\\\\sum _{i=1}^k \\\\partial _{x_{i}}(s_{i}^2\\\\partial _{x_{i}}). \\\\end{aligned}$$</span><p>Under some general hypotheses of the functions <span>\\\\(s_i,\\\\;i=1,\\\\dots , k,\\\\)</span> we establish some new Liouville type theorems for stable solutions of this equation for a large classe of weights. Our results recover and considerably improve the previous works (Mtiri in Acta Appl Math 174:7, 2021; Farina and Hasegawa in Proc Royal Soc Edinburgh 150:1567, 2020).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00887-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00887-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以下涉及格鲁申算子的加权退化椭圆方程: $$\begin{aligned}\Delta _s u+vartheta _{s}(x') |u|^{theta -1}u =0\;\;\text{ in }\,\mathbb {R}^N,\;\;N>2, \;\theta >1, \end{aligned}$$ 其中 \(x'=(x_{1},...,x_{m})\in \mathbb {R}^m,\)\在 C(\mathbb {R}^m, \mathbb {R})\) 是一个连续的正函数,满足$$\begin{aligned}。\displaystyle {lim _{|x'|_{s}\rightarrow \infty }}frac{vartheta _{s}(x')}{|x'|_{s}^{\alpha }}>0,\;\;\text{ for }\text{ some }\,\alpha >-2, \end{aligned}$ 而 \(\Delta _s\) 是一个形式为 $$begin{aligned} 的算子\Delta _s:=sum _{i=1}^k \partial _{x_{i}}(s_{i}^2\partial _{x_{i}}).\end{aligned}$$在函数 \(s_i,\;i=1,\dots,k,\)的一些一般假设下,我们建立了一些新的利乌维尔式定理,用于求这个方程在一大类权重下的稳定解。我们的结果恢复并大大改进了之前的工作(Mtiri 在 Acta Appl Math 174:7, 2021 年;Farina 和 Hasegawa 在 Proc Royal Soc Edinburgh 150:1567, 2020 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville results for stable solutions of weighted elliptic equations involving the Grushin operator

We examine the following weighted degenerate elliptic equation involving the Grushin operator:

$$\begin{aligned} \Delta _s u+\vartheta _{s}(x') |u|^{\theta -1}u =0\;\;\; \text{ in }\,\, \mathbb {R}^N,\;\;N>2, \;\; \theta >1, \end{aligned}$$

where \(x'=(x_{1},...,x_{m})\in \mathbb {R}^m,\) \(1\le m\le N,\) \(\vartheta _{s} \in C(\mathbb {R}^m, \mathbb {R})\) is a continuous positive function satisfying

$$\begin{aligned} \displaystyle {\lim _{|x'|_{s}\rightarrow \infty }}\frac{\vartheta _{s}(x')}{|x'|_{s}^{\alpha }}>0,\;\;\; \text{ for } \text{ some }\,\,\alpha >-2, \end{aligned}$$

and \(\Delta _s\) is an operator of the form

$$\begin{aligned} \Delta _s:=\sum _{i=1}^k \partial _{x_{i}}(s_{i}^2\partial _{x_{i}}). \end{aligned}$$

Under some general hypotheses of the functions \(s_i,\;i=1,\dots , k,\) we establish some new Liouville type theorems for stable solutions of this equation for a large classe of weights. Our results recover and considerably improve the previous works (Mtiri in Acta Appl Math 174:7, 2021; Farina and Hasegawa in Proc Royal Soc Edinburgh 150:1567, 2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信