{"title":"素环中列理想的 b 广义倾斜导数的超交换条件","authors":"B. Dhara, G. S. Sandhu","doi":"10.1007/s11587-024-00885-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>R</i> be any non-commutative prime ring of char <span>\\((R)\\ne 2\\)</span>, <i>L</i> a non-central Lie ideal of <i>R</i> and <i>F</i>, <i>G</i> be <i>b</i>-generalized skew derivations of <i>R</i>. Suppose that </p><span>$$[F(u)u-uG(u), u]_n=0$$</span><p>for all <span>\\(u\\in L\\)</span> and for some fixed integer <span>\\(n\\ge 1\\)</span>, then one of the following assertions holds: </p><ol>\n<li>\n<span>(1)</span>\n<p>there exist <span>\\(a'',b''\\in Q_r\\)</span> such that <span>\\(F(x)=xa''\\)</span>, <span>\\(G(x)=b''x\\)</span> for all <span>\\(x\\in R\\)</span> with <span>\\(a''-b''\\in C\\)</span>;</p>\n</li>\n<li>\n<span>(2)</span>\n<p><span>\\(R\\subseteq M_2(K),\\)</span> the algebra of <span>\\(2\\times 2\\)</span> matrices over a field <i>K</i> and</p><ul>\n<li>\n<p>either <i>K</i> is a finite field;</p>\n</li>\n<li>\n<p>or there exists <span>\\(\\lambda \\in C\\)</span> such that <span>\\((F+G)(x)=\\lambda x\\)</span> for all <span>\\(x\\in R\\)</span>;</p>\n</li>\n<li>\n<p>or there exists <span>\\(\\lambda \\in C\\)</span> and <span>\\(h\\in Q_{r}\\)</span> such that <span>\\((F+G)(x)=hx+xh+\\lambda x\\)</span> for all <span>\\(x\\in R\\)</span>.</p>\n</li>\n</ul>\n</li>\n</ol><p> The above result, naturally improves the recent result obtained by Carini et al. in [4].</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypercommuting conditions of b-generalized skew derivations on Lie ideals in prime rings\",\"authors\":\"B. Dhara, G. S. Sandhu\",\"doi\":\"10.1007/s11587-024-00885-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>R</i> be any non-commutative prime ring of char <span>\\\\((R)\\\\ne 2\\\\)</span>, <i>L</i> a non-central Lie ideal of <i>R</i> and <i>F</i>, <i>G</i> be <i>b</i>-generalized skew derivations of <i>R</i>. Suppose that </p><span>$$[F(u)u-uG(u), u]_n=0$$</span><p>for all <span>\\\\(u\\\\in L\\\\)</span> and for some fixed integer <span>\\\\(n\\\\ge 1\\\\)</span>, then one of the following assertions holds: </p><ol>\\n<li>\\n<span>(1)</span>\\n<p>there exist <span>\\\\(a'',b''\\\\in Q_r\\\\)</span> such that <span>\\\\(F(x)=xa''\\\\)</span>, <span>\\\\(G(x)=b''x\\\\)</span> for all <span>\\\\(x\\\\in R\\\\)</span> with <span>\\\\(a''-b''\\\\in C\\\\)</span>;</p>\\n</li>\\n<li>\\n<span>(2)</span>\\n<p><span>\\\\(R\\\\subseteq M_2(K),\\\\)</span> the algebra of <span>\\\\(2\\\\times 2\\\\)</span> matrices over a field <i>K</i> and</p><ul>\\n<li>\\n<p>either <i>K</i> is a finite field;</p>\\n</li>\\n<li>\\n<p>or there exists <span>\\\\(\\\\lambda \\\\in C\\\\)</span> such that <span>\\\\((F+G)(x)=\\\\lambda x\\\\)</span> for all <span>\\\\(x\\\\in R\\\\)</span>;</p>\\n</li>\\n<li>\\n<p>or there exists <span>\\\\(\\\\lambda \\\\in C\\\\)</span> and <span>\\\\(h\\\\in Q_{r}\\\\)</span> such that <span>\\\\((F+G)(x)=hx+xh+\\\\lambda x\\\\)</span> for all <span>\\\\(x\\\\in R\\\\)</span>.</p>\\n</li>\\n</ul>\\n</li>\\n</ol><p> The above result, naturally improves the recent result obtained by Carini et al. in [4].</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00885-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00885-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
让 R 是任何 char ((R)ne 2)的非交换素环,L 是 R 的非中心列理想,F、G 是 R 的 b-generalized skew derivations。假设$$[F(u)u-uG(u), u]_n=0$$对于所有的\(u在L中)和某个固定整数\(n\ge 1\), 那么以下断言之一成立:(1)there exist \(a'',b'''\in Q_r\) such that \(F(x)=xa''\), \(G(x)=b''x\) for all \(x\in R\) with \(a''-b''\in C\);(2)\(R\subseteq M_2(K),\)在一个域K上的\(2\times 2\) 矩阵的代数,并且K是一个有限域;或者存在\(\lambda\in C\) such that \((F+G)(x)=\lambda x\) for all\(x\in R\); 或者存在\(\lambda\in C\)和\(h\in Q_{r}\) such that \((F+G)(x)=hx+xh+\lambda x\) for all\(x\in R\).上述结果自然改进了 Carini 等人最近在[4]中得到的结果。
Hypercommuting conditions of b-generalized skew derivations on Lie ideals in prime rings
Let R be any non-commutative prime ring of char \((R)\ne 2\), L a non-central Lie ideal of R and F, G be b-generalized skew derivations of R. Suppose that
$$[F(u)u-uG(u), u]_n=0$$
for all \(u\in L\) and for some fixed integer \(n\ge 1\), then one of the following assertions holds:
(1)
there exist \(a'',b''\in Q_r\) such that \(F(x)=xa''\), \(G(x)=b''x\) for all \(x\in R\) with \(a''-b''\in C\);
(2)
\(R\subseteq M_2(K),\) the algebra of \(2\times 2\) matrices over a field K and
either K is a finite field;
or there exists \(\lambda \in C\) such that \((F+G)(x)=\lambda x\) for all \(x\in R\);
or there exists \(\lambda \in C\) and \(h\in Q_{r}\) such that \((F+G)(x)=hx+xh+\lambda x\) for all \(x\in R\).
The above result, naturally improves the recent result obtained by Carini et al. in [4].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.