素环中列理想的 b 广义倾斜导数的超交换条件

IF 1.1 4区 数学 Q1 MATHEMATICS
B. Dhara, G. S. Sandhu
{"title":"素环中列理想的 b 广义倾斜导数的超交换条件","authors":"B. Dhara, G. S. Sandhu","doi":"10.1007/s11587-024-00885-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>R</i> be any non-commutative prime ring of char <span>\\((R)\\ne 2\\)</span>, <i>L</i> a non-central Lie ideal of <i>R</i> and <i>F</i>, <i>G</i> be <i>b</i>-generalized skew derivations of <i>R</i>. Suppose that </p><span>$$[F(u)u-uG(u), u]_n=0$$</span><p>for all <span>\\(u\\in L\\)</span> and for some fixed integer <span>\\(n\\ge 1\\)</span>, then one of the following assertions holds: </p><ol>\n<li>\n<span>(1)</span>\n<p>there exist <span>\\(a'',b''\\in Q_r\\)</span> such that <span>\\(F(x)=xa''\\)</span>, <span>\\(G(x)=b''x\\)</span> for all <span>\\(x\\in R\\)</span> with <span>\\(a''-b''\\in C\\)</span>;</p>\n</li>\n<li>\n<span>(2)</span>\n<p><span>\\(R\\subseteq M_2(K),\\)</span> the algebra of <span>\\(2\\times 2\\)</span> matrices over a field <i>K</i> and</p><ul>\n<li>\n<p>either <i>K</i> is a finite field;</p>\n</li>\n<li>\n<p>or there exists <span>\\(\\lambda \\in C\\)</span> such that <span>\\((F+G)(x)=\\lambda x\\)</span> for all <span>\\(x\\in R\\)</span>;</p>\n</li>\n<li>\n<p>or there exists <span>\\(\\lambda \\in C\\)</span> and <span>\\(h\\in Q_{r}\\)</span> such that <span>\\((F+G)(x)=hx+xh+\\lambda x\\)</span> for all <span>\\(x\\in R\\)</span>.</p>\n</li>\n</ul>\n</li>\n</ol><p> The above result, naturally improves the recent result obtained by Carini et al. in [4].</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"65 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypercommuting conditions of b-generalized skew derivations on Lie ideals in prime rings\",\"authors\":\"B. Dhara, G. S. Sandhu\",\"doi\":\"10.1007/s11587-024-00885-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>R</i> be any non-commutative prime ring of char <span>\\\\((R)\\\\ne 2\\\\)</span>, <i>L</i> a non-central Lie ideal of <i>R</i> and <i>F</i>, <i>G</i> be <i>b</i>-generalized skew derivations of <i>R</i>. Suppose that </p><span>$$[F(u)u-uG(u), u]_n=0$$</span><p>for all <span>\\\\(u\\\\in L\\\\)</span> and for some fixed integer <span>\\\\(n\\\\ge 1\\\\)</span>, then one of the following assertions holds: </p><ol>\\n<li>\\n<span>(1)</span>\\n<p>there exist <span>\\\\(a'',b''\\\\in Q_r\\\\)</span> such that <span>\\\\(F(x)=xa''\\\\)</span>, <span>\\\\(G(x)=b''x\\\\)</span> for all <span>\\\\(x\\\\in R\\\\)</span> with <span>\\\\(a''-b''\\\\in C\\\\)</span>;</p>\\n</li>\\n<li>\\n<span>(2)</span>\\n<p><span>\\\\(R\\\\subseteq M_2(K),\\\\)</span> the algebra of <span>\\\\(2\\\\times 2\\\\)</span> matrices over a field <i>K</i> and</p><ul>\\n<li>\\n<p>either <i>K</i> is a finite field;</p>\\n</li>\\n<li>\\n<p>or there exists <span>\\\\(\\\\lambda \\\\in C\\\\)</span> such that <span>\\\\((F+G)(x)=\\\\lambda x\\\\)</span> for all <span>\\\\(x\\\\in R\\\\)</span>;</p>\\n</li>\\n<li>\\n<p>or there exists <span>\\\\(\\\\lambda \\\\in C\\\\)</span> and <span>\\\\(h\\\\in Q_{r}\\\\)</span> such that <span>\\\\((F+G)(x)=hx+xh+\\\\lambda x\\\\)</span> for all <span>\\\\(x\\\\in R\\\\)</span>.</p>\\n</li>\\n</ul>\\n</li>\\n</ol><p> The above result, naturally improves the recent result obtained by Carini et al. in [4].</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00885-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00885-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 R 是任何 char ((R)ne 2)的非交换素环,L 是 R 的非中心列理想,F、G 是 R 的 b-generalized skew derivations。假设$$[F(u)u-uG(u), u]_n=0$$对于所有的\(u在L中)和某个固定整数\(n\ge 1\), 那么以下断言之一成立:(1)there exist \(a'',b'''\in Q_r\) such that \(F(x)=xa''\), \(G(x)=b''x\) for all \(x\in R\) with \(a''-b''\in C\);(2)\(R\subseteq M_2(K),\)在一个域K上的\(2\times 2\) 矩阵的代数,并且K是一个有限域;或者存在\(\lambda\in C\) such that \((F+G)(x)=\lambda x\) for all\(x\in R\); 或者存在\(\lambda\in C\)和\(h\in Q_{r}\) such that \((F+G)(x)=hx+xh+\lambda x\) for all\(x\in R\).上述结果自然改进了 Carini 等人最近在[4]中得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypercommuting conditions of b-generalized skew derivations on Lie ideals in prime rings

Let R be any non-commutative prime ring of char \((R)\ne 2\), L a non-central Lie ideal of R and F, G be b-generalized skew derivations of R. Suppose that

$$[F(u)u-uG(u), u]_n=0$$

for all \(u\in L\) and for some fixed integer \(n\ge 1\), then one of the following assertions holds:

  1. (1)

    there exist \(a'',b''\in Q_r\) such that \(F(x)=xa''\), \(G(x)=b''x\) for all \(x\in R\) with \(a''-b''\in C\);

  2. (2)

    \(R\subseteq M_2(K),\) the algebra of \(2\times 2\) matrices over a field K and

    • either K is a finite field;

    • or there exists \(\lambda \in C\) such that \((F+G)(x)=\lambda x\) for all \(x\in R\);

    • or there exists \(\lambda \in C\) and \(h\in Q_{r}\) such that \((F+G)(x)=hx+xh+\lambda x\) for all \(x\in R\).

The above result, naturally improves the recent result obtained by Carini et al. in [4].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信