Mohammad Rasouli, Saeed Baghdarnia, Vahid Broujerdian
{"title":"考虑弹性模量变化的约束混凝土增塑分析","authors":"Mohammad Rasouli, Saeed Baghdarnia, Vahid Broujerdian","doi":"10.1007/s40996-024-01613-4","DOIUrl":null,"url":null,"abstract":"<p>Experimental studies have demonstrated that the elastic moduli of concrete, specifically Young’s modulus and Poisson’s ratio, undergo changes during compressive loading. Despite the fact that variations in Young’s modulus are frequently considered in nonlinear analyses, Poisson’s ratio is typically assumed to be constant, which has a direct impact on confinement modeling. In this research project, an attempt was made to enhance the accuracy of predicting the behavior of concrete columns confined by AFRP and CFRP by considering the variation of elastic moduli of concrete during loading. To account for the changes of Poisson’s ratio, an approximate method was proposed that involves assembling a three-part stress–strain curve. The first and last parts of the curve coincide with the stress–strain curves obtained by the limit Poisson’s ratio of 0.2 and 0.5, respectively, while a linear function serves as the transition curve in the middle region. The parameters of the middle zone were calculated using two different approaches: the first involved data fitting and optimization, while the second entailed using a proposed closed-form equation. The finite element program ABAQUS was employed to conduct incremental plastic analyses within the Concrete Damage Plasticity framework. The proposed model is capable of predicting the complete axial compressive stress–strain curve of concrete columns confined by AFRP and CFRP under monotonic compressive loading. A corroboration study was conducted using an experimental dataset from 24 concrete short column test specimens confined by AFRP and CFRP with a wide range of properties. The results showed that the average errors of both the proposed methods are nearly 3%. It means that both the numerical methods generally have a similar and acceptable precision.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental Plastic Analysis of Confined Concrete Considering the Variation of Elastic Moduli\",\"authors\":\"Mohammad Rasouli, Saeed Baghdarnia, Vahid Broujerdian\",\"doi\":\"10.1007/s40996-024-01613-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Experimental studies have demonstrated that the elastic moduli of concrete, specifically Young’s modulus and Poisson’s ratio, undergo changes during compressive loading. Despite the fact that variations in Young’s modulus are frequently considered in nonlinear analyses, Poisson’s ratio is typically assumed to be constant, which has a direct impact on confinement modeling. In this research project, an attempt was made to enhance the accuracy of predicting the behavior of concrete columns confined by AFRP and CFRP by considering the variation of elastic moduli of concrete during loading. To account for the changes of Poisson’s ratio, an approximate method was proposed that involves assembling a three-part stress–strain curve. The first and last parts of the curve coincide with the stress–strain curves obtained by the limit Poisson’s ratio of 0.2 and 0.5, respectively, while a linear function serves as the transition curve in the middle region. The parameters of the middle zone were calculated using two different approaches: the first involved data fitting and optimization, while the second entailed using a proposed closed-form equation. The finite element program ABAQUS was employed to conduct incremental plastic analyses within the Concrete Damage Plasticity framework. The proposed model is capable of predicting the complete axial compressive stress–strain curve of concrete columns confined by AFRP and CFRP under monotonic compressive loading. A corroboration study was conducted using an experimental dataset from 24 concrete short column test specimens confined by AFRP and CFRP with a wide range of properties. The results showed that the average errors of both the proposed methods are nearly 3%. It means that both the numerical methods generally have a similar and acceptable precision.</p>\",\"PeriodicalId\":14550,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40996-024-01613-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01613-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Incremental Plastic Analysis of Confined Concrete Considering the Variation of Elastic Moduli
Experimental studies have demonstrated that the elastic moduli of concrete, specifically Young’s modulus and Poisson’s ratio, undergo changes during compressive loading. Despite the fact that variations in Young’s modulus are frequently considered in nonlinear analyses, Poisson’s ratio is typically assumed to be constant, which has a direct impact on confinement modeling. In this research project, an attempt was made to enhance the accuracy of predicting the behavior of concrete columns confined by AFRP and CFRP by considering the variation of elastic moduli of concrete during loading. To account for the changes of Poisson’s ratio, an approximate method was proposed that involves assembling a three-part stress–strain curve. The first and last parts of the curve coincide with the stress–strain curves obtained by the limit Poisson’s ratio of 0.2 and 0.5, respectively, while a linear function serves as the transition curve in the middle region. The parameters of the middle zone were calculated using two different approaches: the first involved data fitting and optimization, while the second entailed using a proposed closed-form equation. The finite element program ABAQUS was employed to conduct incremental plastic analyses within the Concrete Damage Plasticity framework. The proposed model is capable of predicting the complete axial compressive stress–strain curve of concrete columns confined by AFRP and CFRP under monotonic compressive loading. A corroboration study was conducted using an experimental dataset from 24 concrete short column test specimens confined by AFRP and CFRP with a wide range of properties. The results showed that the average errors of both the proposed methods are nearly 3%. It means that both the numerical methods generally have a similar and acceptable precision.
期刊介绍:
The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering
and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following:
-Structural engineering-
Earthquake engineering-
Concrete engineering-
Construction management-
Steel structures-
Engineering mechanics-
Water resources engineering-
Hydraulic engineering-
Hydraulic structures-
Environmental engineering-
Soil mechanics-
Foundation engineering-
Geotechnical engineering-
Transportation engineering-
Surveying and geomatics.