设计和开发基于物联网的嵌入式系统,用于持续监测生命体征

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
P. N. S. B. S. V. Prasad, Syed Ali Hussain, Pavankalyan Thotakura, Pradyut Kumar Sanki
{"title":"设计和开发基于物联网的嵌入式系统,用于持续监测生命体征","authors":"P. N. S. B. S. V. Prasad, Syed Ali Hussain, Pavankalyan Thotakura, Pradyut Kumar Sanki","doi":"10.1007/s11664-024-11368-3","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of Internet of Things (IoT) technology is driving a transformation in the healthcare sector. This paradigm change provides new opportunities for real-time, ongoing physical parameter monitoring, particularly in remote situations, providing an ideal setting for research and development. IoT device deployment has become widespread, enabling the growth of an automated data exchange ecosystem. However, our capacity to carry out remote monitoring has been constrained by our past dependence on specialized electronic equipment for assessing vital signs such as heart rate (beats per minute [BPM]) and oxygen saturation (SpO2). To address this issue, we developed an innovative technology that makes use of internet connectivity to allow for remote vital sign measurement and monitoring. The main focus of this article is the use of IoT technology to measure and track vital physiological indicators, notably heart rate and oxygen saturation, regardless of a person’s location. In addition, our study aims to create a system that can send out real-time notifications in the event of serious medical emergencies, increasing the likelihood that life-saving actions can be taken in a timely manner.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"3 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of an IoT-Based Embedded System for Continuous Monitoring of Vital Signs\",\"authors\":\"P. N. S. B. S. V. Prasad, Syed Ali Hussain, Pavankalyan Thotakura, Pradyut Kumar Sanki\",\"doi\":\"10.1007/s11664-024-11368-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid development of Internet of Things (IoT) technology is driving a transformation in the healthcare sector. This paradigm change provides new opportunities for real-time, ongoing physical parameter monitoring, particularly in remote situations, providing an ideal setting for research and development. IoT device deployment has become widespread, enabling the growth of an automated data exchange ecosystem. However, our capacity to carry out remote monitoring has been constrained by our past dependence on specialized electronic equipment for assessing vital signs such as heart rate (beats per minute [BPM]) and oxygen saturation (SpO2). To address this issue, we developed an innovative technology that makes use of internet connectivity to allow for remote vital sign measurement and monitoring. The main focus of this article is the use of IoT technology to measure and track vital physiological indicators, notably heart rate and oxygen saturation, regardless of a person’s location. In addition, our study aims to create a system that can send out real-time notifications in the event of serious medical emergencies, increasing the likelihood that life-saving actions can be taken in a timely manner.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11368-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11368-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)技术的快速发展正在推动医疗保健领域的变革。这种模式的转变为实时、持续的物理参数监测提供了新的机遇,尤其是在远程情况下,为研究和开发提供了理想的环境。物联网设备的部署已经变得非常普遍,从而促进了自动化数据交换生态系统的发展。然而,我们过去依赖专业电子设备来评估心率(每分钟心跳数 [BPM])和血氧饱和度(SpO2)等生命体征,这限制了我们进行远程监控的能力。为了解决这个问题,我们开发了一种创新技术,利用互联网连接实现远程生命体征测量和监测。本文的重点是利用物联网技术测量和跟踪重要的生理指标,尤其是心率和血氧饱和度,而不受个人所在位置的限制。此外,我们的研究还旨在创建一个能够在发生严重医疗紧急情况时发出实时通知的系统,从而提高及时采取救生行动的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and Development of an IoT-Based Embedded System for Continuous Monitoring of Vital Signs

Design and Development of an IoT-Based Embedded System for Continuous Monitoring of Vital Signs

The rapid development of Internet of Things (IoT) technology is driving a transformation in the healthcare sector. This paradigm change provides new opportunities for real-time, ongoing physical parameter monitoring, particularly in remote situations, providing an ideal setting for research and development. IoT device deployment has become widespread, enabling the growth of an automated data exchange ecosystem. However, our capacity to carry out remote monitoring has been constrained by our past dependence on specialized electronic equipment for assessing vital signs such as heart rate (beats per minute [BPM]) and oxygen saturation (SpO2). To address this issue, we developed an innovative technology that makes use of internet connectivity to allow for remote vital sign measurement and monitoring. The main focus of this article is the use of IoT technology to measure and track vital physiological indicators, notably heart rate and oxygen saturation, regardless of a person’s location. In addition, our study aims to create a system that can send out real-time notifications in the event of serious medical emergencies, increasing the likelihood that life-saving actions can be taken in a timely manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信