Jianguo Liu, Songlin Tong, Shuaihua Wang, Zhiyao Wan, Xiao Xing, Gan Cui
{"title":"通过电沉积获得的 Ni-SiO2 超疏水性涂层的制备及其特性","authors":"Jianguo Liu, Songlin Tong, Shuaihua Wang, Zhiyao Wan, Xiao Xing, Gan Cui","doi":"10.3390/met14091047","DOIUrl":null,"url":null,"abstract":"Superamphiphobic coatings have shown great potential in many fields such as with their anti-corrosion, high-temperature resistance, self-cleaning, and drag reduction properties. However, due to the poor stability of their coatings, it is difficult to apply them on a large scale. In this paper, two kinds of SiO2 particles and nickel were co-deposited on the surface of steel to construct a micro/nano dual-scale structure by composite electrodeposition. The surface of the coating was then fluorinated with the low-surface-energy material 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (AC-FAS) to prepare a Ni-SiO2 superamphiphobic coating. The coating has a water contact angle of 159° and an oil contact angle of 151°. The effect of nanoparticle concentration on the wettability and surface morphology of the coating was systematically studied. Comparative experiments revealed that the optimal micro/nanoparticle concentrations were 8 g/L of 20 nm SiO2 and 2 g/L of 1 μm SiO2. This preparation method greatly improves the corrosion resistance, wear resistance, chemical stability, and high-temperature resistance of the coating.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"54 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Preparation and Properties of a Ni-SiO2 Superamphiphobic Coating Obtained by Electrodeposition\",\"authors\":\"Jianguo Liu, Songlin Tong, Shuaihua Wang, Zhiyao Wan, Xiao Xing, Gan Cui\",\"doi\":\"10.3390/met14091047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superamphiphobic coatings have shown great potential in many fields such as with their anti-corrosion, high-temperature resistance, self-cleaning, and drag reduction properties. However, due to the poor stability of their coatings, it is difficult to apply them on a large scale. In this paper, two kinds of SiO2 particles and nickel were co-deposited on the surface of steel to construct a micro/nano dual-scale structure by composite electrodeposition. The surface of the coating was then fluorinated with the low-surface-energy material 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (AC-FAS) to prepare a Ni-SiO2 superamphiphobic coating. The coating has a water contact angle of 159° and an oil contact angle of 151°. The effect of nanoparticle concentration on the wettability and surface morphology of the coating was systematically studied. Comparative experiments revealed that the optimal micro/nanoparticle concentrations were 8 g/L of 20 nm SiO2 and 2 g/L of 1 μm SiO2. This preparation method greatly improves the corrosion resistance, wear resistance, chemical stability, and high-temperature resistance of the coating.\",\"PeriodicalId\":18461,\"journal\":{\"name\":\"Metals\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/met14091047\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Preparation and Properties of a Ni-SiO2 Superamphiphobic Coating Obtained by Electrodeposition
Superamphiphobic coatings have shown great potential in many fields such as with their anti-corrosion, high-temperature resistance, self-cleaning, and drag reduction properties. However, due to the poor stability of their coatings, it is difficult to apply them on a large scale. In this paper, two kinds of SiO2 particles and nickel were co-deposited on the surface of steel to construct a micro/nano dual-scale structure by composite electrodeposition. The surface of the coating was then fluorinated with the low-surface-energy material 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (AC-FAS) to prepare a Ni-SiO2 superamphiphobic coating. The coating has a water contact angle of 159° and an oil contact angle of 151°. The effect of nanoparticle concentration on the wettability and surface morphology of the coating was systematically studied. Comparative experiments revealed that the optimal micro/nanoparticle concentrations were 8 g/L of 20 nm SiO2 and 2 g/L of 1 μm SiO2. This preparation method greatly improves the corrosion resistance, wear resistance, chemical stability, and high-temperature resistance of the coating.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.