基于深度学习方法的台风路径预报校准

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES
Atmosphere Pub Date : 2024-09-17 DOI:10.3390/atmos15091125
Chengchen Tao, Zhizu Wang, Yilun Tian, Yaoyao Han, Keke Wang, Qiang Li, Juncheng Zuo
{"title":"基于深度学习方法的台风路径预报校准","authors":"Chengchen Tao, Zhizu Wang, Yilun Tian, Yaoyao Han, Keke Wang, Qiang Li, Juncheng Zuo","doi":"10.3390/atmos15091125","DOIUrl":null,"url":null,"abstract":"An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by correcting WRF-forecasted tracks using deep learning models, including Bidirectional Long Short-Term Memory (BiLSTM) + Convolutional Long Short-Term Memory (ConvLSTM) + Wide and Deep Learning (WDL), BiLSTM + Convolutional Gated Recurrent Unit (ConvGRU) + WDL, and BiLSTM + ConvLSTM + Extreme Deep Factorization Machine (xDeepFM), with a comparison to the Kalman Filter. The results demonstrate that the BiLSTM + ConvLSTM + WDL model reduces the 72 h track prediction error (TPE) from 255.18 km to 159.23 km, representing a 37.6% improvement over the original WRF model, and exhibits significant advantages across all evaluation metrics, particularly in key indicators such as Bias2, Mean Squared Error (MSE), and Sequence. The decomposition of MSE further validates the importance of the BiLSTM, ConvLSTM, WDL, and Temporal Normalization (TN) layers in enhancing the model’s spatio-temporal feature-capturing ability.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of Typhoon Track Forecasts Based on Deep Learning Methods\",\"authors\":\"Chengchen Tao, Zhizu Wang, Yilun Tian, Yaoyao Han, Keke Wang, Qiang Li, Juncheng Zuo\",\"doi\":\"10.3390/atmos15091125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by correcting WRF-forecasted tracks using deep learning models, including Bidirectional Long Short-Term Memory (BiLSTM) + Convolutional Long Short-Term Memory (ConvLSTM) + Wide and Deep Learning (WDL), BiLSTM + Convolutional Gated Recurrent Unit (ConvGRU) + WDL, and BiLSTM + ConvLSTM + Extreme Deep Factorization Machine (xDeepFM), with a comparison to the Kalman Filter. The results demonstrate that the BiLSTM + ConvLSTM + WDL model reduces the 72 h track prediction error (TPE) from 255.18 km to 159.23 km, representing a 37.6% improvement over the original WRF model, and exhibits significant advantages across all evaluation metrics, particularly in key indicators such as Bias2, Mean Squared Error (MSE), and Sequence. The decomposition of MSE further validates the importance of the BiLSTM, ConvLSTM, WDL, and Temporal Normalization (TN) layers in enhancing the model’s spatio-temporal feature-capturing ability.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091125\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091125","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确预报台风路径对灾害预警和减灾至关重要。然而,现有的数值天气预报模型,如气象研究与预测(WRF)模型,在预测台风路径时仍存在显著误差。本研究旨在利用深度学习模型(包括双向长短期记忆(BiLSTM)+卷积长短期记忆(ConvLSTM)+广度和深度学习(WDL)、BiLSTM+卷积门控循环单元(ConvGRU)+WDL,以及BiLSTM+ConvLSTM+极端深度因果化机(xDeepFM))修正WRF预测的航迹,并与卡尔曼滤波器进行比较,从而提高预报精度。结果表明,BiLSTM + ConvLSTM + WDL 模型可将 72 小时的轨迹预测误差(TPE)从 255.18 km 降低到 159.23 km,与原始 WRF 模型相比提高了 37.6%,并且在所有评估指标上都表现出显著优势,尤其是在偏差2、平均平方误差(MSE)和序列等关键指标上。MSE 的分解进一步验证了 BiLSTM、ConvLSTM、WDL 和时间归一化 (TN) 层在增强模型时空特征捕捉能力方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by correcting WRF-forecasted tracks using deep learning models, including Bidirectional Long Short-Term Memory (BiLSTM) + Convolutional Long Short-Term Memory (ConvLSTM) + Wide and Deep Learning (WDL), BiLSTM + Convolutional Gated Recurrent Unit (ConvGRU) + WDL, and BiLSTM + ConvLSTM + Extreme Deep Factorization Machine (xDeepFM), with a comparison to the Kalman Filter. The results demonstrate that the BiLSTM + ConvLSTM + WDL model reduces the 72 h track prediction error (TPE) from 255.18 km to 159.23 km, representing a 37.6% improvement over the original WRF model, and exhibits significant advantages across all evaluation metrics, particularly in key indicators such as Bias2, Mean Squared Error (MSE), and Sequence. The decomposition of MSE further validates the importance of the BiLSTM, ConvLSTM, WDL, and Temporal Normalization (TN) layers in enhancing the model’s spatio-temporal feature-capturing ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信